DPDK: Data Plane Development Kit

18.02.0-rc1
examples/ip_fragmentation/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/param.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_lpm.h>
#include <rte_lpm6.h>
#include <rte_ip.h>
#include <rte_string_fns.h>
#include <rte_ip_frag.h>
#define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
/* allow max jumbo frame 9.5 KB */
#define JUMBO_FRAME_MAX_SIZE 0x2600
#define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b))
/*
* Default byte size for the IPv6 Maximum Transfer Unit (MTU).
* This value includes the size of IPv6 header.
*/
#define IPV4_MTU_DEFAULT ETHER_MTU
#define IPV6_MTU_DEFAULT ETHER_MTU
/*
* Default payload in bytes for the IPv6 packet.
*/
#define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr))
#define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr))
/*
* Max number of fragments per packet expected - defined by config file.
*/
#define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
#define NB_MBUF 8192
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET 3
/*
* Configurable number of RX/TX ring descriptors
*/
#define RTE_TEST_RX_DESC_DEFAULT 128
#define RTE_TEST_TX_DESC_DEFAULT 512
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
/* ethernet addresses of ports */
static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
#ifndef IPv4_BYTES
#define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
#define IPv4_BYTES(addr) \
(uint8_t) (((addr) >> 24) & 0xFF),\
(uint8_t) (((addr) >> 16) & 0xFF),\
(uint8_t) (((addr) >> 8) & 0xFF),\
(uint8_t) ((addr) & 0xFF)
#endif
#ifndef IPv6_BYTES
#define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
"%02x%02x:%02x%02x:%02x%02x:%02x%02x"
#define IPv6_BYTES(addr) \
addr[0], addr[1], addr[2], addr[3], \
addr[4], addr[5], addr[6], addr[7], \
addr[8], addr[9], addr[10], addr[11],\
addr[12], addr[13],addr[14], addr[15]
#endif
#define IPV6_ADDR_LEN 16
/* mask of enabled ports */
static int enabled_port_mask = 0;
static int rx_queue_per_lcore = 1;
#define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
struct mbuf_table {
uint16_t len;
struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
};
struct rx_queue {
struct rte_mempool *direct_pool;
struct rte_mempool *indirect_pool;
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
uint16_t portid;
};
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 16
struct lcore_queue_conf {
uint16_t n_rx_queue;
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
static struct rte_eth_conf port_conf = {
.rxmode = {
.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
.split_hdr_size = 0,
.ignore_offload_bitfield = 1,
.offloads = (DEV_RX_OFFLOAD_CHECKSUM |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_CRC_STRIP),
},
.txmode = {
.offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
},
};
/*
* IPv4 forwarding table
*/
struct l3fwd_ipv4_route {
uint32_t ip;
uint8_t depth;
uint8_t if_out;
};
struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
{IPv4(100,10,0,0), 16, 0},
{IPv4(100,20,0,0), 16, 1},
{IPv4(100,30,0,0), 16, 2},
{IPv4(100,40,0,0), 16, 3},
{IPv4(100,50,0,0), 16, 4},
{IPv4(100,60,0,0), 16, 5},
{IPv4(100,70,0,0), 16, 6},
{IPv4(100,80,0,0), 16, 7},
};
/*
* IPv6 forwarding table
*/
struct l3fwd_ipv6_route {
uint8_t ip[IPV6_ADDR_LEN];
uint8_t depth;
uint8_t if_out;
};
static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
};
#define LPM_MAX_RULES 1024
#define LPM6_MAX_RULES 1024
#define LPM6_NUMBER_TBL8S (1 << 16)
struct rte_lpm6_config lpm6_config = {
.max_rules = LPM6_MAX_RULES,
.number_tbl8s = LPM6_NUMBER_TBL8S,
.flags = 0
};
static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
/* Send burst of packets on an output interface */
static inline int
send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port)
{
struct rte_mbuf **m_table;
int ret;
uint16_t queueid;
queueid = qconf->tx_queue_id[port];
m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
ret = rte_eth_tx_burst(port, queueid, m_table, n);
if (unlikely(ret < n)) {
do {
rte_pktmbuf_free(m_table[ret]);
} while (++ret < n);
}
return 0;
}
static inline void
l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
uint8_t queueid, uint16_t port_in)
{
struct rx_queue *rxq;
uint32_t i, len, next_hop;
uint8_t ipv6;
uint16_t port_out;
int32_t len2;
ipv6 = 0;
rxq = &qconf->rx_queue_list[queueid];
/* by default, send everything back to the source port */
port_out = port_in;
/* Remove the Ethernet header and trailer from the input packet */
rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
/* Build transmission burst */
len = qconf->tx_mbufs[port_out].len;
/* if this is an IPv4 packet */
struct ipv4_hdr *ip_hdr;
uint32_t ip_dst;
/* Read the lookup key (i.e. ip_dst) from the input packet */
ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *);
ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
/* Find destination port */
if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
(enabled_port_mask & 1 << next_hop) != 0) {
port_out = next_hop;
/* Build transmission burst for new port */
len = qconf->tx_mbufs[port_out].len;
}
/* if we don't need to do any fragmentation */
if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
qconf->tx_mbufs[port_out].m_table[len] = m;
len2 = 1;
} else {
&qconf->tx_mbufs[port_out].m_table[len],
(uint16_t)(MBUF_TABLE_SIZE - len),
IPV4_MTU_DEFAULT,
rxq->direct_pool, rxq->indirect_pool);
/* Free input packet */
/* If we fail to fragment the packet */
if (unlikely (len2 < 0))
return;
}
} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
/* if this is an IPv6 packet */
struct ipv6_hdr *ip_hdr;
ipv6 = 1;
/* Read the lookup key (i.e. ip_dst) from the input packet */
ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *);
/* Find destination port */
if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
&next_hop) == 0 &&
(enabled_port_mask & 1 << next_hop) != 0) {
port_out = next_hop;
/* Build transmission burst for new port */
len = qconf->tx_mbufs[port_out].len;
}
/* if we don't need to do any fragmentation */
if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
qconf->tx_mbufs[port_out].m_table[len] = m;
len2 = 1;
} else {
&qconf->tx_mbufs[port_out].m_table[len],
(uint16_t)(MBUF_TABLE_SIZE - len),
IPV6_MTU_DEFAULT,
rxq->direct_pool, rxq->indirect_pool);
/* Free input packet */
/* If we fail to fragment the packet */
if (unlikely (len2 < 0))
return;
}
}
/* else, just forward the packet */
else {
qconf->tx_mbufs[port_out].m_table[len] = m;
len2 = 1;
}
for (i = len; i < len + len2; i ++) {
void *d_addr_bytes;
m = qconf->tx_mbufs[port_out].m_table[i];
struct ether_hdr *eth_hdr = (struct ether_hdr *)
rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr));
if (eth_hdr == NULL) {
rte_panic("No headroom in mbuf.\n");
}
m->l2_len = sizeof(struct ether_hdr);
/* 02:00:00:00:00:xx */
d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40);
/* src addr */
ether_addr_copy(&ports_eth_addr[port_out], &eth_hdr->s_addr);
if (ipv6)
else
}
len += len2;
if (likely(len < MAX_PKT_BURST)) {
qconf->tx_mbufs[port_out].len = (uint16_t)len;
return;
}
/* Transmit packets */
send_burst(qconf, (uint16_t)len, port_out);
qconf->tx_mbufs[port_out].len = 0;
}
/* main processing loop */
static int
main_loop(__attribute__((unused)) void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc;
int i, j, nb_rx;
uint16_t portid;
struct lcore_queue_conf *qconf;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
prev_tsc = 0;
lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].portid;
RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
portid);
}
while (1) {
cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
/*
* This could be optimized (use queueid instead of
* portid), but it is not called so often
*/
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if (qconf->tx_mbufs[portid].len == 0)
continue;
send_burst(&lcore_queue_conf[lcore_id],
qconf->tx_mbufs[portid].len,
portid);
qconf->tx_mbufs[portid].len = 0;
}
prev_tsc = cur_tsc;
}
/*
* Read packet from RX queues
*/
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].portid;
nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
MAX_PKT_BURST);
/* Prefetch first packets */
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
pkts_burst[j], void *));
}
/* Prefetch and forward already prefetched packets */
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
j + PREFETCH_OFFSET], void *));
l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
}
/* Forward remaining prefetched packets */
for (; j < nb_rx; j++) {
l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
}
}
}
}
/* display usage */
static void
print_usage(const char *prgname)
{
printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -q NQ: number of queue (=ports) per lcore (default is 1)\n",
prgname);
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (pm == 0)
return -1;
return pm;
}
static int
parse_nqueue(const char *q_arg)
{
char *end = NULL;
unsigned long n;
/* parse hexadecimal string */
n = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (n == 0)
return -1;
if (n >= MAX_RX_QUEUE_PER_LCORE)
return -1;
return n;
}
/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{NULL, 0, 0, 0}
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:q:",
lgopts, &option_index)) != EOF) {
switch (opt) {
/* portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask < 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
/* nqueue */
case 'q':
rx_queue_per_lcore = parse_nqueue(optarg);
if (rx_queue_per_lcore < 0) {
printf("invalid queue number\n");
print_usage(prgname);
return -1;
}
break;
/* long options */
case 0:
print_usage(prgname);
return -1;
default:
print_usage(prgname);
return -1;
}
}
if (enabled_port_mask == 0) {
printf("portmask not specified\n");
print_usage(prgname);
return -1;
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 1; /* reset getopt lib */
return ret;
}
static void
print_ethaddr(const char *name, struct ether_addr *eth_addr)
{
char buf[ETHER_ADDR_FMT_SIZE];
ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint16_t port_num, uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
for (portid = 0; portid < port_num; portid++) {
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
rte_eth_link_get_nowait(portid, &link);
/* print link status if flag set */
if (print_flag == 1) {
if (link.link_status)
printf(
"Port%d Link Up .Speed %u Mbps - %s\n",
portid, link.link_speed,
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex\n"));
else
printf("Port %d Link Down\n", portid);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("\ndone\n");
}
}
}
/* Check L3 packet type detection capablity of the NIC port */
static int
check_ptype(int portid)
{
int i, ret;
int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0;
uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
if (ret <= 0)
return 0;
uint32_t ptypes[ret];
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
for (i = 0; i < ret; ++i) {
if (ptypes[i] & RTE_PTYPE_L3_IPV4)
ptype_l3_ipv4 = 1;
if (ptypes[i] & RTE_PTYPE_L3_IPV6)
ptype_l3_ipv6 = 1;
}
if (ptype_l3_ipv4 == 0)
printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
if (ptype_l3_ipv6 == 0)
printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
if (ptype_l3_ipv4 && ptype_l3_ipv6)
return 1;
return 0;
}
/* Parse packet type of a packet by SW */
static inline void
parse_ptype(struct rte_mbuf *m)
{
struct ether_hdr *eth_hdr;
uint32_t packet_type = RTE_PTYPE_UNKNOWN;
uint16_t ether_type;
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
ether_type = eth_hdr->ether_type;
if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4))
else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6))
m->packet_type = packet_type;
}
/* callback function to detect packet type for a queue of a port */
static uint16_t
cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
struct rte_mbuf *pkts[], uint16_t nb_pkts,
uint16_t max_pkts __rte_unused,
void *user_param __rte_unused)
{
uint16_t i;
for (i = 0; i < nb_pkts; ++i)
parse_ptype(pkts[i]);
return nb_pkts;
}
static int
init_routing_table(void)
{
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
int socket, ret;
unsigned i;
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
if (socket_lpm[socket]) {
lpm = socket_lpm[socket];
/* populate the LPM table */
for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
ret = rte_lpm_add(lpm,
l3fwd_ipv4_route_array[i].ip,
l3fwd_ipv4_route_array[i].depth,
l3fwd_ipv4_route_array[i].if_out);
if (ret < 0) {
RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
"LPM table\n", i);
return -1;
}
RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
"/%d (port %d)\n",
socket,
IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
l3fwd_ipv4_route_array[i].depth,
l3fwd_ipv4_route_array[i].if_out);
}
}
if (socket_lpm6[socket]) {
lpm6 = socket_lpm6[socket];
/* populate the LPM6 table */
for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
ret = rte_lpm6_add(lpm6,
l3fwd_ipv6_route_array[i].ip,
l3fwd_ipv6_route_array[i].depth,
l3fwd_ipv6_route_array[i].if_out);
if (ret < 0) {
RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
"LPM6 table\n", i);
return -1;
}
RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
"/%d (port %d)\n",
socket,
IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
l3fwd_ipv6_route_array[i].depth,
l3fwd_ipv6_route_array[i].if_out);
}
}
}
return 0;
}
static int
init_mem(void)
{
char buf[PATH_MAX];
struct rte_mempool *mp;
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
struct rte_lpm_config lpm_config;
int socket;
unsigned lcore_id;
/* traverse through lcores and initialize structures on each socket */
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
socket = rte_lcore_to_socket_id(lcore_id);
if (socket == SOCKET_ID_ANY)
socket = 0;
if (socket_direct_pool[socket] == NULL) {
RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
socket);
snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32,
0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
if (mp == NULL) {
RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
return -1;
}
socket_direct_pool[socket] = mp;
}
if (socket_indirect_pool[socket] == NULL) {
RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
socket);
snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0,
socket);
if (mp == NULL) {
RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
return -1;
}
socket_indirect_pool[socket] = mp;
}
if (socket_lpm[socket] == NULL) {
RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
lpm_config.max_rules = LPM_MAX_RULES;
lpm_config.number_tbl8s = 256;
lpm_config.flags = 0;
lpm = rte_lpm_create(buf, socket, &lpm_config);
if (lpm == NULL) {
RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
return -1;
}
socket_lpm[socket] = lpm;
}
if (socket_lpm6[socket] == NULL) {
RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
if (lpm6 == NULL) {
RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
return -1;
}
socket_lpm6[socket] = lpm6;
}
}
return 0;
}
int
main(int argc, char **argv)
{
struct lcore_queue_conf *qconf;
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf *txconf;
struct rx_queue *rxq;
int socket, ret;
unsigned nb_ports;
uint16_t queueid = 0;
unsigned lcore_id = 0, rx_lcore_id = 0;
uint32_t n_tx_queue, nb_lcores;
uint16_t portid;
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eal_init failed");
argc -= ret;
argv += ret;
/* parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid arguments");
nb_ports = rte_eth_dev_count();
if (nb_ports == 0)
rte_exit(EXIT_FAILURE, "No ports found!\n");
nb_lcores = rte_lcore_count();
/* initialize structures (mempools, lpm etc.) */
if (init_mem() < 0)
rte_panic("Cannot initialize memory structures!\n");
/* check if portmask has non-existent ports */
if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
/* initialize all ports */
for (portid = 0; portid < nb_ports; portid++) {
struct rte_eth_conf local_port_conf = port_conf;
struct rte_eth_rxconf rxq_conf;
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("Skipping disabled port %d\n", portid);
continue;
}
qconf = &lcore_queue_conf[rx_lcore_id];
/* limit the frame size to the maximum supported by NIC */
rte_eth_dev_info_get(portid, &dev_info);
local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
dev_info.max_rx_pktlen,
local_port_conf.rxmode.max_rx_pkt_len);
/* get the lcore_id for this port */
while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
rx_lcore_id ++;
if (rx_lcore_id >= RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE, "Not enough cores\n");
qconf = &lcore_queue_conf[rx_lcore_id];
}
socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
if (socket == SOCKET_ID_ANY)
socket = 0;
rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
rxq->portid = portid;
rxq->direct_pool = socket_direct_pool[socket];
rxq->indirect_pool = socket_indirect_pool[socket];
rxq->lpm = socket_lpm[socket];
rxq->lpm6 = socket_lpm6[socket];
qconf->n_rx_queue++;
/* init port */
printf("Initializing port %d on lcore %u...", portid,
rx_lcore_id);
fflush(stdout);
n_tx_queue = nb_lcores;
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
local_port_conf.txmode.offloads |=
ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
&local_port_conf);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%d\n",
ret, portid);
}
ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
&nb_txd);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE, "Cannot adjust number of "
"descriptors: err=%d, port=%d\n", ret, portid);
}
/* init one RX queue */
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = local_port_conf.rxmode.offloads;
ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
socket, &rxq_conf,
socket_direct_pool[socket]);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
"err=%d, port=%d\n",
ret, portid);
}
rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
print_ethaddr(" Address:", &ports_eth_addr[portid]);
printf("\n");
/* init one TX queue per couple (lcore,port) */
queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
socket = (int) rte_lcore_to_socket_id(lcore_id);
printf("txq=%u,%d ", lcore_id, queueid);
fflush(stdout);
txconf = &dev_info.default_txconf;
txconf->offloads = local_port_conf.txmode.offloads;
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
socket, txconf);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
"err=%d, port=%d\n", ret, portid);
}
qconf = &lcore_queue_conf[lcore_id];
qconf->tx_queue_id[portid] = queueid;
queueid++;
}
printf("\n");
}
printf("\n");
/* start ports */
for (portid = 0; portid < nb_ports; portid++) {
if ((enabled_port_mask & (1 << portid)) == 0) {
continue;
}
/* Start device */
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
ret, portid);
if (check_ptype(portid) == 0) {
rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL);
printf("Add Rx callback function to detect L3 packet type by SW :"
" port = %d\n", portid);
}
}
if (init_routing_table() < 0)
rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
check_all_ports_link_status(nb_ports, enabled_port_mask);
/* launch per-lcore init on every lcore */
if (rte_eal_wait_lcore(lcore_id) < 0)
return -1;
}
return 0;
}