DPDK: Data Plane Development Kit

18.05.0-rc0
examples/ptpclient/ptpclient.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015 Intel Corporation
*/
/*
* This application is a simple Layer 2 PTP v2 client. It shows delta values
* which are used to synchronize the PHC clock. if the "-T 1" parameter is
* passed to the application the Linux kernel clock is also synchronized.
*/
#include <stdint.h>
#include <inttypes.h>
#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_cycles.h>
#include <rte_lcore.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <limits.h>
#include <sys/time.h>
#include <getopt.h>
#define RX_RING_SIZE 1024
#define TX_RING_SIZE 1024
#define NUM_MBUFS 8191
#define MBUF_CACHE_SIZE 250
/* Values for the PTP messageType field. */
#define SYNC 0x0
#define DELAY_REQ 0x1
#define PDELAY_REQ 0x2
#define PDELAY_RESP 0x3
#define FOLLOW_UP 0x8
#define DELAY_RESP 0x9
#define PDELAY_RESP_FOLLOW_UP 0xA
#define ANNOUNCE 0xB
#define SIGNALING 0xC
#define MANAGEMENT 0xD
#define NSEC_PER_SEC 1000000000L
#define KERNEL_TIME_ADJUST_LIMIT 20000
#define PTP_PROTOCOL 0x88F7
struct rte_mempool *mbuf_pool;
uint32_t ptp_enabled_port_mask;
uint8_t ptp_enabled_port_nb;
static uint8_t ptp_enabled_ports[RTE_MAX_ETHPORTS];
static const struct rte_eth_conf port_conf_default = {
.rxmode = {
.ignore_offload_bitfield = 1,
},
};
static const struct ether_addr ether_multicast = {
.addr_bytes = {0x01, 0x1b, 0x19, 0x0, 0x0, 0x0}
};
/* Structs used for PTP handling. */
struct tstamp {
uint16_t sec_msb;
uint32_t sec_lsb;
uint32_t ns;
} __attribute__((packed));
struct clock_id {
uint8_t id[8];
};
struct port_id {
struct clock_id clock_id;
uint16_t port_number;
} __attribute__((packed));
struct ptp_header {
uint8_t msg_type;
uint8_t ver;
uint16_t message_length;
uint8_t domain_number;
uint8_t reserved1;
uint8_t flag_field[2];
int64_t correction;
uint32_t reserved2;
struct port_id source_port_id;
uint16_t seq_id;
uint8_t control;
int8_t log_message_interval;
} __attribute__((packed));
struct sync_msg {
struct ptp_header hdr;
struct tstamp origin_tstamp;
} __attribute__((packed));
struct follow_up_msg {
struct ptp_header hdr;
struct tstamp precise_origin_tstamp;
uint8_t suffix[0];
} __attribute__((packed));
struct delay_req_msg {
struct ptp_header hdr;
struct tstamp origin_tstamp;
} __attribute__((packed));
struct delay_resp_msg {
struct ptp_header hdr;
struct tstamp rx_tstamp;
struct port_id req_port_id;
uint8_t suffix[0];
} __attribute__((packed));
struct ptp_message {
union {
struct ptp_header header;
struct sync_msg sync;
struct delay_req_msg delay_req;
struct follow_up_msg follow_up;
struct delay_resp_msg delay_resp;
} __attribute__((packed));
};
struct ptpv2_data_slave_ordinary {
struct rte_mbuf *m;
struct timespec tstamp1;
struct timespec tstamp2;
struct timespec tstamp3;
struct timespec tstamp4;
struct clock_id client_clock_id;
struct clock_id master_clock_id;
struct timeval new_adj;
int64_t delta;
uint16_t portid;
uint16_t seqID_SYNC;
uint16_t seqID_FOLLOWUP;
uint8_t ptpset;
uint8_t kernel_time_set;
uint16_t current_ptp_port;
};
static struct ptpv2_data_slave_ordinary ptp_data;
static inline uint64_t timespec64_to_ns(const struct timespec *ts)
{
return ((uint64_t) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec;
}
static struct timeval
ns_to_timeval(int64_t nsec)
{
struct timespec t_spec = {0, 0};
struct timeval t_eval = {0, 0};
int32_t rem;
if (nsec == 0)
return t_eval;
rem = nsec % NSEC_PER_SEC;
t_spec.tv_sec = nsec / NSEC_PER_SEC;
if (rem < 0) {
t_spec.tv_sec--;
rem += NSEC_PER_SEC;
}
t_spec.tv_nsec = rem;
t_eval.tv_sec = t_spec.tv_sec;
t_eval.tv_usec = t_spec.tv_nsec / 1000;
return t_eval;
}
/*
* Initializes a given port using global settings and with the RX buffers
* coming from the mbuf_pool passed as a parameter.
*/
static inline int
port_init(uint16_t port, struct rte_mempool *mbuf_pool)
{
struct rte_eth_dev_info dev_info;
struct rte_eth_conf port_conf = port_conf_default;
const uint16_t rx_rings = 1;
const uint16_t tx_rings = 1;
int retval;
uint16_t q;
uint16_t nb_rxd = RX_RING_SIZE;
uint16_t nb_txd = TX_RING_SIZE;
return -1;
rte_eth_dev_info_get(port, &dev_info);
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
port_conf.txmode.offloads |=
/* Force full Tx path in the driver, required for IEEE1588 */
/* Configure the Ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)
return retval;
retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &nb_rxd, &nb_txd);
if (retval != 0)
return retval;
/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx_rings; q++) {
retval = rte_eth_rx_queue_setup(port, q, nb_rxd,
rte_eth_dev_socket_id(port), NULL, mbuf_pool);
if (retval < 0)
return retval;
}
/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {
/* Setup txq_flags */
struct rte_eth_txconf *txconf;
txconf = &dev_info.default_txconf;
txconf->offloads = port_conf.txmode.offloads;
retval = rte_eth_tx_queue_setup(port, q, nb_txd,
rte_eth_dev_socket_id(port), txconf);
if (retval < 0)
return retval;
}
/* Start the Ethernet port. */
retval = rte_eth_dev_start(port);
if (retval < 0)
return retval;
/* Enable timesync timestamping for the Ethernet device */
/* Enable RX in promiscuous mode for the Ethernet device. */
return 0;
}
static void
print_clock_info(struct ptpv2_data_slave_ordinary *ptp_data)
{
int64_t nsec;
struct timespec net_time, sys_time;
printf("Master Clock id: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
ptp_data->master_clock_id.id[0],
ptp_data->master_clock_id.id[1],
ptp_data->master_clock_id.id[2],
ptp_data->master_clock_id.id[3],
ptp_data->master_clock_id.id[4],
ptp_data->master_clock_id.id[5],
ptp_data->master_clock_id.id[6],
ptp_data->master_clock_id.id[7]);
printf("\nT2 - Slave Clock. %lds %ldns",
(ptp_data->tstamp2.tv_sec),
(ptp_data->tstamp2.tv_nsec));
printf("\nT1 - Master Clock. %lds %ldns ",
ptp_data->tstamp1.tv_sec,
(ptp_data->tstamp1.tv_nsec));
printf("\nT3 - Slave Clock. %lds %ldns",
ptp_data->tstamp3.tv_sec,
(ptp_data->tstamp3.tv_nsec));
printf("\nT4 - Master Clock. %lds %ldns ",
ptp_data->tstamp4.tv_sec,
(ptp_data->tstamp4.tv_nsec));
printf("\nDelta between master and slave clocks:%"PRId64"ns\n",
ptp_data->delta);
clock_gettime(CLOCK_REALTIME, &sys_time);
rte_eth_timesync_read_time(ptp_data->current_ptp_port, &net_time);
time_t ts = net_time.tv_sec;
printf("\n\nComparison between Linux kernel Time and PTP:");
printf("\nCurrent PTP Time: %.24s %.9ld ns",
ctime(&ts), net_time.tv_nsec);
nsec = (int64_t)timespec64_to_ns(&net_time) -
(int64_t)timespec64_to_ns(&sys_time);
ptp_data->new_adj = ns_to_timeval(nsec);
gettimeofday(&ptp_data->new_adj, NULL);
time_t tp = ptp_data->new_adj.tv_sec;
printf("\nCurrent SYS Time: %.24s %.6ld ns",
ctime(&tp), ptp_data->new_adj.tv_usec);
printf("\nDelta between PTP and Linux Kernel time:%"PRId64"ns\n",
nsec);
printf("[Ctrl+C to quit]\n");
/* Clear screen and put cursor in column 1, row 1 */
printf("\033[2J\033[1;1H");
}
static int64_t
delta_eval(struct ptpv2_data_slave_ordinary *ptp_data)
{
int64_t delta;
uint64_t t1 = 0;
uint64_t t2 = 0;
uint64_t t3 = 0;
uint64_t t4 = 0;
t1 = timespec64_to_ns(&ptp_data->tstamp1);
t2 = timespec64_to_ns(&ptp_data->tstamp2);
t3 = timespec64_to_ns(&ptp_data->tstamp3);
t4 = timespec64_to_ns(&ptp_data->tstamp4);
delta = -((int64_t)((t2 - t1) - (t4 - t3))) / 2;
return delta;
}
/*
* Parse the PTP SYNC message.
*/
static void
parse_sync(struct ptpv2_data_slave_ordinary *ptp_data, uint16_t rx_tstamp_idx)
{
struct ptp_header *ptp_hdr;
ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(ptp_data->m, char *)
+ sizeof(struct ether_hdr));
ptp_data->seqID_SYNC = rte_be_to_cpu_16(ptp_hdr->seq_id);
if (ptp_data->ptpset == 0) {
rte_memcpy(&ptp_data->master_clock_id,
&ptp_hdr->source_port_id.clock_id,
sizeof(struct clock_id));
ptp_data->ptpset = 1;
}
if (memcmp(&ptp_hdr->source_port_id.clock_id,
&ptp_hdr->source_port_id.clock_id,
sizeof(struct clock_id)) == 0) {
if (ptp_data->ptpset == 1)
&ptp_data->tstamp2, rx_tstamp_idx);
}
}
/*
* Parse the PTP FOLLOWUP message and send DELAY_REQ to the master clock.
*/
static void
parse_fup(struct ptpv2_data_slave_ordinary *ptp_data)
{
struct ether_hdr *eth_hdr;
struct ptp_header *ptp_hdr;
struct clock_id *client_clkid;
struct ptp_message *ptp_msg;
struct rte_mbuf *created_pkt;
struct tstamp *origin_tstamp;
struct ether_addr eth_multicast = ether_multicast;
size_t pkt_size;
int wait_us;
struct rte_mbuf *m = ptp_data->m;
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
+ sizeof(struct ether_hdr));
if (memcmp(&ptp_data->master_clock_id,
&ptp_hdr->source_port_id.clock_id,
sizeof(struct clock_id)) != 0)
return;
ptp_data->seqID_FOLLOWUP = rte_be_to_cpu_16(ptp_hdr->seq_id);
ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) +
sizeof(struct ether_hdr));
origin_tstamp = &ptp_msg->follow_up.precise_origin_tstamp;
ptp_data->tstamp1.tv_nsec = ntohl(origin_tstamp->ns);
ptp_data->tstamp1.tv_sec =
((uint64_t)ntohl(origin_tstamp->sec_lsb)) |
(((uint64_t)ntohs(origin_tstamp->sec_msb)) << 32);
if (ptp_data->seqID_FOLLOWUP == ptp_data->seqID_SYNC) {
created_pkt = rte_pktmbuf_alloc(mbuf_pool);
pkt_size = sizeof(struct ether_hdr) +
sizeof(struct ptp_message);
created_pkt->data_len = pkt_size;
created_pkt->pkt_len = pkt_size;
eth_hdr = rte_pktmbuf_mtod(created_pkt, struct ether_hdr *);
rte_eth_macaddr_get(ptp_data->portid, &eth_hdr->s_addr);
/* Set multicast address 01-1B-19-00-00-00. */
ether_addr_copy(&eth_multicast, &eth_hdr->d_addr);
eth_hdr->ether_type = htons(PTP_PROTOCOL);
ptp_msg = (struct ptp_message *)
(rte_pktmbuf_mtod(created_pkt, char *) +
sizeof(struct ether_hdr));
ptp_msg->delay_req.hdr.seq_id = htons(ptp_data->seqID_SYNC);
ptp_msg->delay_req.hdr.msg_type = DELAY_REQ;
ptp_msg->delay_req.hdr.ver = 2;
ptp_msg->delay_req.hdr.control = 1;
ptp_msg->delay_req.hdr.log_message_interval = 127;
/* Set up clock id. */
client_clkid =
&ptp_msg->delay_req.hdr.source_port_id.clock_id;
client_clkid->id[0] = eth_hdr->s_addr.addr_bytes[0];
client_clkid->id[1] = eth_hdr->s_addr.addr_bytes[1];
client_clkid->id[2] = eth_hdr->s_addr.addr_bytes[2];
client_clkid->id[3] = 0xFF;
client_clkid->id[4] = 0xFE;
client_clkid->id[5] = eth_hdr->s_addr.addr_bytes[3];
client_clkid->id[6] = eth_hdr->s_addr.addr_bytes[4];
client_clkid->id[7] = eth_hdr->s_addr.addr_bytes[5];
rte_memcpy(&ptp_data->client_clock_id,
client_clkid,
sizeof(struct clock_id));
/* Enable flag for hardware timestamping. */
created_pkt->ol_flags |= PKT_TX_IEEE1588_TMST;
/*Read value from NIC to prevent latching with old value. */
&ptp_data->tstamp3);
/* Transmit the packet. */
rte_eth_tx_burst(ptp_data->portid, 0, &created_pkt, 1);
wait_us = 0;
ptp_data->tstamp3.tv_nsec = 0;
ptp_data->tstamp3.tv_sec = 0;
/* Wait at least 1 us to read TX timestamp. */
while ((rte_eth_timesync_read_tx_timestamp(ptp_data->portid,
&ptp_data->tstamp3) < 0) && (wait_us < 1000)) {
wait_us++;
}
}
}
/*
* Update the kernel time with the difference between it and the current NIC
* time.
*/
static inline void
update_kernel_time(void)
{
int64_t nsec;
struct timespec net_time, sys_time;
clock_gettime(CLOCK_REALTIME, &sys_time);
rte_eth_timesync_read_time(ptp_data.current_ptp_port, &net_time);
nsec = (int64_t)timespec64_to_ns(&net_time) -
(int64_t)timespec64_to_ns(&sys_time);
ptp_data.new_adj = ns_to_timeval(nsec);
/*
* If difference between kernel time and system time in NIC is too big
* (more than +/- 20 microseconds), use clock_settime to set directly
* the kernel time, as adjtime is better for small adjustments (takes
* longer to adjust the time).
*/
if (nsec > KERNEL_TIME_ADJUST_LIMIT || nsec < -KERNEL_TIME_ADJUST_LIMIT)
clock_settime(CLOCK_REALTIME, &net_time);
else
adjtime(&ptp_data.new_adj, 0);
}
/*
* Parse the DELAY_RESP message.
*/
static void
parse_drsp(struct ptpv2_data_slave_ordinary *ptp_data)
{
struct rte_mbuf *m = ptp_data->m;
struct ptp_message *ptp_msg;
struct tstamp *rx_tstamp;
uint16_t seq_id;
ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) +
sizeof(struct ether_hdr));
seq_id = rte_be_to_cpu_16(ptp_msg->delay_resp.hdr.seq_id);
if (memcmp(&ptp_data->client_clock_id,
&ptp_msg->delay_resp.req_port_id.clock_id,
sizeof(struct clock_id)) == 0) {
if (seq_id == ptp_data->seqID_FOLLOWUP) {
rx_tstamp = &ptp_msg->delay_resp.rx_tstamp;
ptp_data->tstamp4.tv_nsec = ntohl(rx_tstamp->ns);
ptp_data->tstamp4.tv_sec =
((uint64_t)ntohl(rx_tstamp->sec_lsb)) |
(((uint64_t)ntohs(rx_tstamp->sec_msb)) << 32);
/* Evaluate the delta for adjustment. */
ptp_data->delta = delta_eval(ptp_data);
rte_eth_timesync_adjust_time(ptp_data->portid,
ptp_data->delta);
ptp_data->current_ptp_port = ptp_data->portid;
/* Update kernel time if enabled in app parameters. */
if (ptp_data->kernel_time_set == 1)
update_kernel_time();
}
}
}
/* This function processes PTP packets, implementing slave PTP IEEE1588 L2
* functionality.
*/
static void
parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) {
struct ptp_header *ptp_hdr;
struct ether_hdr *eth_hdr;
uint16_t eth_type;
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);
if (eth_type == PTP_PROTOCOL) {
ptp_data.m = m;
ptp_data.portid = portid;
ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
+ sizeof(struct ether_hdr));
switch (ptp_hdr->msg_type) {
case SYNC:
parse_sync(&ptp_data, m->timesync);
break;
case FOLLOW_UP:
parse_fup(&ptp_data);
break;
case DELAY_RESP:
parse_drsp(&ptp_data);
print_clock_info(&ptp_data);
break;
default:
break;
}
}
}
/*
* The lcore main. This is the main thread that does the work, reading from an
* input port and writing to an output port.
*/
static __attribute__((noreturn)) void
lcore_main(void)
{
uint16_t portid;
unsigned nb_rx;
struct rte_mbuf *m;
/*
* Check that the port is on the same NUMA node as the polling thread
* for best performance.
*/
printf("\nCore %u Waiting for SYNC packets. [Ctrl+C to quit]\n",
/* Run until the application is quit or killed. */
while (1) {
/* Read packet from RX queues. */
for (portid = 0; portid < ptp_enabled_port_nb; portid++) {
portid = ptp_enabled_ports[portid];
nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);
if (likely(nb_rx == 0))
continue;
parse_ptp_frames(portid, m);
}
}
}
static void
print_usage(const char *prgname)
{
printf("%s [EAL options] -- -p PORTMASK -T VALUE\n"
" -T VALUE: 0 - Disable, 1 - Enable Linux Clock"
" Synchronization (0 default)\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n",
prgname);
}
static int
ptp_parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* Parse the hexadecimal string. */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (pm == 0)
return -1;
return pm;
}
static int
parse_ptp_kernel(const char *param)
{
char *end = NULL;
unsigned long pm;
/* Parse the hexadecimal string. */
pm = strtoul(param, &end, 16);
if ((param[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (pm == 0)
return 0;
return 1;
}
/* Parse the commandline arguments. */
static int
ptp_parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = { {NULL, 0, 0, 0} };
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:T:",
lgopts, &option_index)) != EOF) {
switch (opt) {
/* Portmask. */
case 'p':
ptp_enabled_port_mask = ptp_parse_portmask(optarg);
if (ptp_enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
/* Time synchronization. */
case 'T':
ret = parse_ptp_kernel(optarg);
if (ret < 0) {
print_usage(prgname);
return -1;
}
ptp_data.kernel_time_set = ret;
break;
default:
print_usage(prgname);
return -1;
}
}
argv[optind-1] = prgname;
optind = 1; /* Reset getopt lib. */
return 0;
}
/*
* The main function, which does initialization and calls the per-lcore
* functions.
*/
int
main(int argc, char *argv[])
{
unsigned nb_ports;
uint16_t portid;
/* Initialize the Environment Abstraction Layer (EAL). */
int ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
memset(&ptp_data, '\0', sizeof(struct ptpv2_data_slave_ordinary));
argc -= ret;
argv += ret;
ret = ptp_parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");
/* Check that there is an even number of ports to send/receive on. */
/* Creates a new mempool in memory to hold the mbufs. */
mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (mbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
/* Initialize all ports. */
if ((ptp_enabled_port_mask & (1 << portid)) != 0) {
if (port_init(portid, mbuf_pool) == 0) {
ptp_enabled_ports[ptp_enabled_port_nb] = portid;
ptp_enabled_port_nb++;
} else {
rte_exit(EXIT_FAILURE,
"Cannot init port %"PRIu8 "\n",
portid);
}
} else
printf("Skipping disabled port %u\n", portid);
}
if (ptp_enabled_port_nb == 0) {
rte_exit(EXIT_FAILURE,
"All available ports are disabled."
" Please set portmask.\n");
}
if (rte_lcore_count() > 1)
printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
/* Call lcore_main on the master core only. */
lcore_main();
return 0;
}