DPDK: Data Plane Development Kit

18.02.0-rc1
examples/tep_termination/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2015 Intel Corporation
*/
#include <arpa/inet.h>
#include <getopt.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/virtio_net.h>
#include <linux/virtio_ring.h>
#include <signal.h>
#include <stdint.h>
#include <sys/eventfd.h>
#include <sys/param.h>
#include <unistd.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_log.h>
#include <rte_string_fns.h>
#include <rte_malloc.h>
#include <rte_vhost.h>
#include <rte_pause.h>
#include "main.h"
#include "vxlan.h"
#include "vxlan_setup.h"
/* the maximum number of external ports supported */
#define MAX_SUP_PORTS 1
#define NUM_MBUFS_PER_PORT ((MAX_QUEUES * RTE_TEST_RX_DESC_DEFAULT) +\
(nb_switching_cores * MAX_PKT_BURST) +\
(nb_switching_cores * \
RTE_TEST_TX_DESC_DEFAULT) +\
(nb_switching_cores * MBUF_CACHE_SIZE))
#define MBUF_CACHE_SIZE 128
#define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
#define MAX_PKT_BURST 32 /* Max burst size for RX/TX */
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
/* Defines how long we wait between retries on RX */
#define BURST_RX_WAIT_US 15
#define BURST_RX_RETRIES 4 /* Number of retries on RX. */
#define JUMBO_FRAME_MAX_SIZE 0x2600
/* State of virtio device. */
#define DEVICE_MAC_LEARNING 0
#define DEVICE_RX 1
#define DEVICE_SAFE_REMOVE 2
/* Config_core_flag status definitions. */
#define REQUEST_DEV_REMOVAL 1
#define ACK_DEV_REMOVAL 0
/* Configurable number of RX/TX ring descriptors */
#define RTE_TEST_RX_DESC_DEFAULT 1024
#define RTE_TEST_TX_DESC_DEFAULT 512
/* Get first 4 bytes in mbuf headroom. */
#define MBUF_HEADROOM_UINT32(mbuf) (*(uint32_t *)((uint8_t *)(mbuf) \
+ sizeof(struct rte_mbuf)))
#define INVALID_PORT_ID 0xFFFF
/* Size of buffers used for snprintfs. */
#define MAX_PRINT_BUFF 6072
/* Maximum character device basename size. */
#define MAX_BASENAME_SZ 20
/* Maximum long option length for option parsing. */
#define MAX_LONG_OPT_SZ 64
/* Used to compare MAC addresses. */
#define MAC_ADDR_CMP 0xFFFFFFFFFFFFULL
#define CMD_LINE_OPT_NB_DEVICES "nb-devices"
#define CMD_LINE_OPT_UDP_PORT "udp-port"
#define CMD_LINE_OPT_TX_CHECKSUM "tx-checksum"
#define CMD_LINE_OPT_TSO_SEGSZ "tso-segsz"
#define CMD_LINE_OPT_FILTER_TYPE "filter-type"
#define CMD_LINE_OPT_ENCAP "encap"
#define CMD_LINE_OPT_DECAP "decap"
#define CMD_LINE_OPT_RX_RETRY "rx-retry"
#define CMD_LINE_OPT_RX_RETRY_DELAY "rx-retry-delay"
#define CMD_LINE_OPT_RX_RETRY_NUM "rx-retry-num"
#define CMD_LINE_OPT_STATS "stats"
#define CMD_LINE_OPT_DEV_BASENAME "dev-basename"
/* mask of enabled ports */
static uint32_t enabled_port_mask;
/*Number of switching cores enabled*/
static uint32_t nb_switching_cores;
/* number of devices/queues to support*/
uint16_t nb_devices = 2;
/* max ring descriptor, ixgbe, i40e, e1000 all are 4096. */
#define MAX_RING_DESC 4096
struct vpool {
struct rte_mempool *pool;
struct rte_ring *ring;
uint32_t buf_size;
} vpool_array[MAX_QUEUES+MAX_QUEUES];
/* UDP tunneling port */
uint16_t udp_port = 4789;
/* enable/disable inner TX checksum */
uint8_t tx_checksum = 0;
/* TCP segment size */
uint16_t tso_segsz = 0;
/* enable/disable decapsulation */
uint8_t rx_decap = 1;
/* enable/disable encapsulation */
uint8_t tx_encap = 1;
/* RX filter type for tunneling packet */
uint8_t filter_idx = 1;
/* overlay packet operation */
struct ol_switch_ops overlay_options = {
.port_configure = vxlan_port_init,
.tunnel_setup = vxlan_link,
.tunnel_destroy = vxlan_unlink,
.tx_handle = vxlan_tx_pkts,
.rx_handle = vxlan_rx_pkts,
.param_handle = NULL,
};
/* Enable stats. */
uint32_t enable_stats = 0;
/* Enable retries on RX. */
static uint32_t enable_retry = 1;
/* Specify timeout (in useconds) between retries on RX. */
static uint32_t burst_rx_delay_time = BURST_RX_WAIT_US;
/* Specify the number of retries on RX. */
static uint32_t burst_rx_retry_num = BURST_RX_RETRIES;
/* Character device basename. Can be set by user. */
static char dev_basename[MAX_BASENAME_SZ] = "vhost-net";
static unsigned lcore_ids[RTE_MAX_LCORE];
uint16_t ports[RTE_MAX_ETHPORTS];
static unsigned nb_ports;
/* ethernet addresses of ports */
struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
/* heads for the main used and free linked lists for the data path. */
static struct virtio_net_data_ll *ll_root_used;
static struct virtio_net_data_ll *ll_root_free;
static struct lcore_info lcore_info[RTE_MAX_LCORE];
/* Used for queueing bursts of TX packets. */
struct mbuf_table {
unsigned len;
unsigned txq_id;
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
/* TX queue for each data core. */
struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE];
struct device_statistics dev_statistics[MAX_DEVICES];
static int
us_vhost_parse_basename(const char *q_arg)
{
/* parse number string */
if (strlen(q_arg) >= MAX_BASENAME_SZ)
return -1;
else
snprintf((char *)&dev_basename, MAX_BASENAME_SZ, "%s", q_arg);
return 0;
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (pm == 0)
return -1;
return pm;
}
static int
parse_num_opt(const char *q_arg, uint32_t max_valid_value)
{
char *end = NULL;
unsigned long num;
/* parse unsigned int string */
num = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (num > max_valid_value)
return -1;
return num;
}
static void
tep_termination_usage(const char *prgname)
{
RTE_LOG(INFO, VHOST_CONFIG, "%s [EAL options] -- -p PORTMASK\n"
" --udp-port: UDP destination port for VXLAN packet\n"
" --nb-devices[1-64]: The number of virtIO device\n"
" --tx-checksum [0|1]: inner Tx checksum offload\n"
" --tso-segsz [0-N]: TCP segment size\n"
" --decap [0|1]: tunneling packet decapsulation\n"
" --encap [0|1]: tunneling packet encapsulation\n"
" --filter-type[1-3]: filter type for tunneling packet\n"
" 1: Inner MAC and tenent ID\n"
" 2: Inner MAC and VLAN, and tenent ID\n"
" 3: Outer MAC, Inner MAC and tenent ID\n"
" -p PORTMASK: Set mask for ports to be used by application\n"
" --rx-retry [0|1]: disable/enable(default) retries on rx."
" Enable retry if destintation queue is full\n"
" --rx-retry-delay [0-N]: timeout(in usecond) between retries on RX."
" This makes effect only if retries on rx enabled\n"
" --rx-retry-num [0-N]: the number of retries on rx."
" This makes effect only if retries on rx enabled\n"
" --stats [0-N]: 0: Disable stats, N: Time in seconds to print stats\n"
" --dev-basename: The basename to be used for the character device.\n",
prgname);
}
static int
tep_termination_parse_args(int argc, char **argv)
{
int opt, ret;
int option_index;
unsigned i;
const char *prgname = argv[0];
static struct option long_option[] = {
{CMD_LINE_OPT_NB_DEVICES, required_argument, NULL, 0},
{CMD_LINE_OPT_UDP_PORT, required_argument, NULL, 0},
{CMD_LINE_OPT_TX_CHECKSUM, required_argument, NULL, 0},
{CMD_LINE_OPT_TSO_SEGSZ, required_argument, NULL, 0},
{CMD_LINE_OPT_DECAP, required_argument, NULL, 0},
{CMD_LINE_OPT_ENCAP, required_argument, NULL, 0},
{CMD_LINE_OPT_FILTER_TYPE, required_argument, NULL, 0},
{CMD_LINE_OPT_RX_RETRY, required_argument, NULL, 0},
{CMD_LINE_OPT_RX_RETRY_DELAY, required_argument, NULL, 0},
{CMD_LINE_OPT_RX_RETRY_NUM, required_argument, NULL, 0},
{CMD_LINE_OPT_STATS, required_argument, NULL, 0},
{CMD_LINE_OPT_DEV_BASENAME, required_argument, NULL, 0},
{NULL, 0, 0, 0},
};
/* Parse command line */
while ((opt = getopt_long(argc, argv, "p:",
long_option, &option_index)) != EOF) {
switch (opt) {
/* Portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid portmask\n");
tep_termination_usage(prgname);
return -1;
}
break;
case 0:
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_NB_DEVICES,
sizeof(CMD_LINE_OPT_NB_DEVICES))) {
ret = parse_num_opt(optarg, MAX_DEVICES);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for nb-devices [0-%d]\n",
MAX_DEVICES);
tep_termination_usage(prgname);
return -1;
} else
nb_devices = ret;
}
/* Enable/disable retries on RX. */
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_RX_RETRY,
sizeof(CMD_LINE_OPT_RX_RETRY))) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for rx-retry [0|1]\n");
tep_termination_usage(prgname);
return -1;
} else
enable_retry = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_TSO_SEGSZ,
sizeof(CMD_LINE_OPT_TSO_SEGSZ))) {
ret = parse_num_opt(optarg, INT16_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for TCP segment size [0-N]\n");
tep_termination_usage(prgname);
return -1;
} else
tso_segsz = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_UDP_PORT,
sizeof(CMD_LINE_OPT_UDP_PORT))) {
ret = parse_num_opt(optarg, INT16_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for UDP port [0-N]\n");
tep_termination_usage(prgname);
return -1;
} else
udp_port = ret;
}
/* Specify the retries delay time (in useconds) on RX.*/
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_RX_RETRY_DELAY,
sizeof(CMD_LINE_OPT_RX_RETRY_DELAY))) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for rx-retry-delay [0-N]\n");
tep_termination_usage(prgname);
return -1;
} else
burst_rx_delay_time = ret;
}
/* Specify the retries number on RX. */
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_RX_RETRY_NUM,
sizeof(CMD_LINE_OPT_RX_RETRY_NUM))) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for rx-retry-num [0-N]\n");
tep_termination_usage(prgname);
return -1;
} else
burst_rx_retry_num = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_TX_CHECKSUM,
sizeof(CMD_LINE_OPT_TX_CHECKSUM))) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for tx-checksum [0|1]\n");
tep_termination_usage(prgname);
return -1;
} else
tx_checksum = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_FILTER_TYPE,
sizeof(CMD_LINE_OPT_FILTER_TYPE))) {
ret = parse_num_opt(optarg, 3);
if ((ret == -1) || (ret == 0)) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for filter type [1-3]\n");
tep_termination_usage(prgname);
return -1;
} else
filter_idx = ret - 1;
}
/* Enable/disable encapsulation on RX. */
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_DECAP,
sizeof(CMD_LINE_OPT_DECAP))) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for decap [0|1]\n");
tep_termination_usage(prgname);
return -1;
} else
rx_decap = ret;
}
/* Enable/disable encapsulation on TX. */
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_ENCAP,
sizeof(CMD_LINE_OPT_ENCAP))) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for encap [0|1]\n");
tep_termination_usage(prgname);
return -1;
} else
tx_encap = ret;
}
/* Enable/disable stats. */
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_STATS,
sizeof(CMD_LINE_OPT_STATS))) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for stats [0..N]\n");
tep_termination_usage(prgname);
return -1;
} else
enable_stats = ret;
}
/* Set character device basename. */
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_DEV_BASENAME,
sizeof(CMD_LINE_OPT_DEV_BASENAME))) {
if (us_vhost_parse_basename(optarg) == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for character "
"device basename (Max %d characters)\n",
MAX_BASENAME_SZ);
tep_termination_usage(prgname);
return -1;
}
}
break;
/* Invalid option - print options. */
default:
tep_termination_usage(prgname);
return -1;
}
}
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
if (enabled_port_mask & (1 << i))
ports[nb_ports++] = (uint8_t)i;
}
if ((nb_ports == 0) || (nb_ports > MAX_SUP_PORTS)) {
RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u,"
"but only %u port can be enabled\n", nb_ports,
MAX_SUP_PORTS);
return -1;
}
return 0;
}
static unsigned
check_ports_num(unsigned max_nb_ports)
{
unsigned valid_nb_ports = nb_ports;
unsigned portid;
if (nb_ports > max_nb_ports) {
RTE_LOG(INFO, VHOST_PORT, "\nSpecified port number(%u) "
" exceeds total system port number(%u)\n",
nb_ports, max_nb_ports);
nb_ports = max_nb_ports;
}
for (portid = 0; portid < nb_ports; portid++) {
if (ports[portid] >= max_nb_ports) {
RTE_LOG(INFO, VHOST_PORT,
"\nSpecified port ID(%u) exceeds max "
" system port ID(%u)\n",
ports[portid], (max_nb_ports - 1));
ports[portid] = INVALID_PORT_ID;
valid_nb_ports--;
}
}
return valid_nb_ports;
}
virtio_tx_route(struct vhost_dev *vdev, struct rte_mbuf *m)
{
struct mbuf_table *tx_q;
struct rte_mbuf **m_table;
unsigned len, ret = 0;
const uint16_t lcore_id = rte_lcore_id();
RTE_LOG_DP(DEBUG, VHOST_DATA, "(%d) TX: MAC address is external\n",
vdev->vid);
/* Add packet to the port tx queue */
tx_q = &lcore_tx_queue[lcore_id];
len = tx_q->len;
tx_q->m_table[len] = m;
len++;
if (enable_stats) {
dev_statistics[vdev->vid].tx_total++;
dev_statistics[vdev->vid].tx++;
}
if (unlikely(len == MAX_PKT_BURST)) {
m_table = (struct rte_mbuf **)tx_q->m_table;
ret = overlay_options.tx_handle(ports[0],
(uint16_t)tx_q->txq_id, m_table,
(uint16_t)tx_q->len);
/* Free any buffers not handled by TX and update
* the port stats.
*/
if (unlikely(ret < len)) {
do {
rte_pktmbuf_free(m_table[ret]);
} while (++ret < len);
}
len = 0;
}
tx_q->len = len;
return;
}
static int
switch_worker(__rte_unused void *arg)
{
struct rte_mempool *mbuf_pool = arg;
struct vhost_dev *vdev = NULL;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct virtio_net_data_ll *dev_ll;
struct mbuf_table *tx_q;
volatile struct lcore_ll_info *lcore_ll;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
/ US_PER_S * BURST_TX_DRAIN_US;
uint64_t prev_tsc, diff_tsc, cur_tsc, ret_count = 0;
unsigned i, ret = 0;
const uint16_t lcore_id = rte_lcore_id();
const uint16_t num_cores = (uint16_t)rte_lcore_count();
uint16_t rx_count = 0;
uint16_t tx_count;
uint32_t retry = 0;
RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started\n", lcore_id);
lcore_ll = lcore_info[lcore_id].lcore_ll;
prev_tsc = 0;
tx_q = &lcore_tx_queue[lcore_id];
for (i = 0; i < num_cores; i++) {
if (lcore_ids[i] == lcore_id) {
tx_q->txq_id = i;
break;
}
}
while (1) {
cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
if (tx_q->len) {
RTE_LOG_DP(DEBUG, VHOST_DATA, "TX queue drained after "
"timeout with burst size %u\n",
tx_q->len);
ret = overlay_options.tx_handle(ports[0],
(uint16_t)tx_q->txq_id,
(struct rte_mbuf **)tx_q->m_table,
(uint16_t)tx_q->len);
if (unlikely(ret < tx_q->len)) {
do {
rte_pktmbuf_free(tx_q->m_table[ret]);
} while (++ret < tx_q->len);
}
tx_q->len = 0;
}
prev_tsc = cur_tsc;
}
rte_prefetch0(lcore_ll->ll_root_used);
if (lcore_ll->dev_removal_flag == REQUEST_DEV_REMOVAL)
lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL;
/*
* Process devices
*/
dev_ll = lcore_ll->ll_root_used;
while (dev_ll != NULL) {
vdev = dev_ll->vdev;
if (unlikely(vdev->remove)) {
dev_ll = dev_ll->next;
overlay_options.tunnel_destroy(vdev);
vdev->ready = DEVICE_SAFE_REMOVE;
continue;
}
if (likely(vdev->ready == DEVICE_RX)) {
/* Handle guest RX */
rx_count = rte_eth_rx_burst(ports[0],
vdev->rx_q, pkts_burst, MAX_PKT_BURST);
if (rx_count) {
/*
* Retry is enabled and the queue is
* full then we wait and retry to
* avoid packet loss. Here MAX_PKT_BURST
* must be less than virtio queue size
*/
if (enable_retry && unlikely(rx_count >
rte_vhost_avail_entries(vdev->vid, VIRTIO_RXQ))) {
for (retry = 0; retry < burst_rx_retry_num;
retry++) {
rte_delay_us(burst_rx_delay_time);
if (rx_count <= rte_vhost_avail_entries(vdev->vid, VIRTIO_RXQ))
break;
}
}
ret_count = overlay_options.rx_handle(vdev->vid, pkts_burst, rx_count);
if (enable_stats) {
&dev_statistics[vdev->vid].rx_total_atomic,
rx_count);
&dev_statistics[vdev->vid].rx_atomic, ret_count);
}
while (likely(rx_count)) {
rx_count--;
rte_pktmbuf_free(pkts_burst[rx_count]);
}
}
}
if (likely(!vdev->remove)) {
/* Handle guest TX*/
tx_count = rte_vhost_dequeue_burst(vdev->vid,
VIRTIO_TXQ, mbuf_pool,
pkts_burst, MAX_PKT_BURST);
/* If this is the first received packet we need to learn the MAC */
if (unlikely(vdev->ready == DEVICE_MAC_LEARNING) && tx_count) {
if (vdev->remove ||
(overlay_options.tunnel_setup(vdev, pkts_burst[0]) == -1)) {
while (tx_count)
rte_pktmbuf_free(pkts_burst[--tx_count]);
}
}
while (tx_count)
virtio_tx_route(vdev, pkts_burst[--tx_count]);
}
/* move to the next device in the list */
dev_ll = dev_ll->next;
}
}
return 0;
}
static void
add_data_ll_entry(struct virtio_net_data_ll **ll_root_addr,
struct virtio_net_data_ll *ll_dev)
{
struct virtio_net_data_ll *ll = *ll_root_addr;
/* Set next as NULL and use a compiler barrier to avoid reordering. */
ll_dev->next = NULL;
/* If ll == NULL then this is the first device. */
if (ll) {
/* Increment to the tail of the linked list. */
while (ll->next != NULL)
ll = ll->next;
ll->next = ll_dev;
} else {
*ll_root_addr = ll_dev;
}
}
static void
rm_data_ll_entry(struct virtio_net_data_ll **ll_root_addr,
struct virtio_net_data_ll *ll_dev,
struct virtio_net_data_ll *ll_dev_last)
{
struct virtio_net_data_ll *ll = *ll_root_addr;
if (unlikely((ll == NULL) || (ll_dev == NULL)))
return;
if (ll_dev == ll)
*ll_root_addr = ll_dev->next;
else
if (likely(ll_dev_last != NULL))
ll_dev_last->next = ll_dev->next;
else
RTE_LOG(ERR, VHOST_CONFIG,
"Remove entry form ll failed.\n");
}
static struct virtio_net_data_ll *
get_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr)
{
struct virtio_net_data_ll *ll_free = *ll_root_addr;
struct virtio_net_data_ll *ll_dev;
if (ll_free == NULL)
return NULL;
ll_dev = ll_free;
*ll_root_addr = ll_free->next;
return ll_dev;
}
static void
put_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr,
struct virtio_net_data_ll *ll_dev)
{
struct virtio_net_data_ll *ll_free = *ll_root_addr;
if (ll_dev == NULL)
return;
ll_dev->next = ll_free;
*ll_root_addr = ll_dev;
}
static struct virtio_net_data_ll *
alloc_data_ll(uint32_t size)
{
struct virtio_net_data_ll *ll_new;
uint32_t i;
/* Malloc and then chain the linked list. */
ll_new = malloc(size * sizeof(struct virtio_net_data_ll));
if (ll_new == NULL) {
RTE_LOG(ERR, VHOST_CONFIG,
"Failed to allocate memory for ll_new.\n");
return NULL;
}
for (i = 0; i < size - 1; i++) {
ll_new[i].vdev = NULL;
ll_new[i].next = &ll_new[i+1];
}
ll_new[i].next = NULL;
return ll_new;
}
static int
init_data_ll(void)
{
int lcore;
lcore_info[lcore].lcore_ll =
malloc(sizeof(struct lcore_ll_info));
if (lcore_info[lcore].lcore_ll == NULL) {
RTE_LOG(ERR, VHOST_CONFIG,
"Failed to allocate memory for lcore_ll.\n");
return -1;
}
lcore_info[lcore].lcore_ll->device_num = 0;
lcore_info[lcore].lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL;
lcore_info[lcore].lcore_ll->ll_root_used = NULL;
if (nb_devices % nb_switching_cores)
lcore_info[lcore].lcore_ll->ll_root_free =
alloc_data_ll((nb_devices / nb_switching_cores)
+ 1);
else
lcore_info[lcore].lcore_ll->ll_root_free =
alloc_data_ll(nb_devices / nb_switching_cores);
}
/* Allocate devices up to a maximum of MAX_DEVICES. */
ll_root_free = alloc_data_ll(MIN((nb_devices), MAX_DEVICES));
return 0;
}
static void
destroy_device(int vid)
{
struct virtio_net_data_ll *ll_lcore_dev_cur;
struct virtio_net_data_ll *ll_main_dev_cur;
struct virtio_net_data_ll *ll_lcore_dev_last = NULL;
struct virtio_net_data_ll *ll_main_dev_last = NULL;
struct vhost_dev *vdev = NULL;
int lcore;
ll_main_dev_cur = ll_root_used;
while (ll_main_dev_cur != NULL) {
if (ll_main_dev_cur->vdev->vid == vid) {
vdev = ll_main_dev_cur->vdev;
break;
}
}
if (!vdev)
return;
/* set the remove flag. */
vdev->remove = 1;
while (vdev->ready != DEVICE_SAFE_REMOVE)
/* Search for entry to be removed from lcore ll */
ll_lcore_dev_cur = lcore_info[vdev->coreid].lcore_ll->ll_root_used;
while (ll_lcore_dev_cur != NULL) {
if (ll_lcore_dev_cur->vdev == vdev) {
break;
} else {
ll_lcore_dev_last = ll_lcore_dev_cur;
ll_lcore_dev_cur = ll_lcore_dev_cur->next;
}
}
if (ll_lcore_dev_cur == NULL) {
RTE_LOG(ERR, VHOST_CONFIG,
"(%d) Failed to find the dev to be destroy.\n", vid);
return;
}
/* Search for entry to be removed from main ll */
ll_main_dev_cur = ll_root_used;
ll_main_dev_last = NULL;
while (ll_main_dev_cur != NULL) {
if (ll_main_dev_cur->vdev == vdev) {
break;
} else {
ll_main_dev_last = ll_main_dev_cur;
ll_main_dev_cur = ll_main_dev_cur->next;
}
}
/* Remove entries from the lcore and main ll. */
rm_data_ll_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_used,
ll_lcore_dev_cur, ll_lcore_dev_last);
rm_data_ll_entry(&ll_root_used, ll_main_dev_cur, ll_main_dev_last);
/* Set the dev_removal_flag on each lcore. */
lcore_info[lcore].lcore_ll->dev_removal_flag =
REQUEST_DEV_REMOVAL;
}
/*
* Once each core has set the dev_removal_flag to
* ACK_DEV_REMOVAL we can be sure that they can no longer access
* the device removed from the linked lists and that the devices
* are no longer in use.
*/
while (lcore_info[lcore].lcore_ll->dev_removal_flag
!= ACK_DEV_REMOVAL)
}
/* Add the entries back to the lcore and main free ll.*/
put_data_ll_free_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_free,
ll_lcore_dev_cur);
put_data_ll_free_entry(&ll_root_free, ll_main_dev_cur);
/* Decrement number of device on the lcore. */
lcore_info[vdev->coreid].lcore_ll->device_num--;
RTE_LOG(INFO, VHOST_DATA, "(%d) Device has been removed "
"from data core\n", vid);
rte_free(vdev);
}
static int
new_device(int vid)
{
struct virtio_net_data_ll *ll_dev;
int lcore, core_add = 0;
uint32_t device_num_min = nb_devices;
struct vhost_dev *vdev;
vdev = rte_zmalloc("vhost device", sizeof(*vdev), RTE_CACHE_LINE_SIZE);
if (vdev == NULL) {
RTE_LOG(INFO, VHOST_DATA,
"(%d) Couldn't allocate memory for vhost dev\n", vid);
return -1;
}
vdev->vid = vid;
/* Add device to main ll */
ll_dev = get_data_ll_free_entry(&ll_root_free);
if (ll_dev == NULL) {
RTE_LOG(INFO, VHOST_DATA, "(%d) No free entry found in"
" linked list Device limit of %d devices per core"
" has been reached\n", vid, nb_devices);
if (vdev->regions_hpa)
rte_free(vdev->regions_hpa);
rte_free(vdev);
return -1;
}
ll_dev->vdev = vdev;
add_data_ll_entry(&ll_root_used, ll_dev);
vdev->rx_q = vid;
/* reset ready flag */
vdev->ready = DEVICE_MAC_LEARNING;
vdev->remove = 0;
/* Find a suitable lcore to add the device. */
if (lcore_info[lcore].lcore_ll->device_num < device_num_min) {
device_num_min = lcore_info[lcore].lcore_ll->device_num;
core_add = lcore;
}
}
/* Add device to lcore ll */
ll_dev = get_data_ll_free_entry(&lcore_info[core_add].lcore_ll->ll_root_free);
if (ll_dev == NULL) {
RTE_LOG(INFO, VHOST_DATA,
"(%d) Failed to add device to data core\n",
vid);
vdev->ready = DEVICE_SAFE_REMOVE;
destroy_device(vid);
rte_free(vdev->regions_hpa);
rte_free(vdev);
return -1;
}
ll_dev->vdev = vdev;
vdev->coreid = core_add;
add_data_ll_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_used,
ll_dev);
/* Initialize device stats */
memset(&dev_statistics[vid], 0,
sizeof(struct device_statistics));
/* Disable notifications. */
rte_vhost_enable_guest_notification(vid, VIRTIO_RXQ, 0);
rte_vhost_enable_guest_notification(vid, VIRTIO_TXQ, 0);
lcore_info[vdev->coreid].lcore_ll->device_num++;
RTE_LOG(INFO, VHOST_DATA, "(%d) Device has been added to data core %d\n",
vid, vdev->coreid);
return 0;
}
static const struct vhost_device_ops virtio_net_device_ops = {
.destroy_device = destroy_device,
};
static void
print_stats(void)
{
struct virtio_net_data_ll *dev_ll;
uint64_t tx_dropped, rx_dropped;
uint64_t tx, tx_total, rx, rx_total, rx_ip_csum, rx_l4_csum;
int vid;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char top_left[] = { 27, '[', '1', ';', '1', 'H', '\0' };
while (1) {
sleep(enable_stats);
/* Clear screen and move to top left */
printf("%s%s", clr, top_left);
printf("\nDevice statistics ================================");
dev_ll = ll_root_used;
while (dev_ll != NULL) {
vid = dev_ll->vdev->vid;
tx_total = dev_statistics[vid].tx_total;
tx = dev_statistics[vid].tx;
tx_dropped = tx_total - tx;
rx_total = rte_atomic64_read(
&dev_statistics[vid].rx_total_atomic);
&dev_statistics[vid].rx_atomic);
rx_dropped = rx_total - rx;
rx_ip_csum = rte_atomic64_read(
&dev_statistics[vid].rx_bad_ip_csum);
rx_l4_csum = rte_atomic64_read(
&dev_statistics[vid].rx_bad_l4_csum);
printf("\nStatistics for device %d ----------"
"\nTX total: %"PRIu64""
"\nTX dropped: %"PRIu64""
"\nTX successful: %"PRIu64""
"\nRX total: %"PRIu64""
"\nRX bad IP csum: %"PRIu64""
"\nRX bad L4 csum: %"PRIu64""
"\nRX dropped: %"PRIu64""
"\nRX successful: %"PRIu64"",
vid,
tx_total,
tx_dropped,
tx,
rx_total,
rx_ip_csum,
rx_l4_csum,
rx_dropped,
rx);
dev_ll = dev_ll->next;
}
printf("\n================================================\n");
}
}
int
main(int argc, char *argv[])
{
struct rte_mempool *mbuf_pool = NULL;
unsigned lcore_id, core_id = 0;
unsigned nb_ports, valid_nb_ports;
int ret;
uint16_t portid;
uint16_t queue_id;
static pthread_t tid;
char thread_name[RTE_MAX_THREAD_NAME_LEN];
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
argc -= ret;
argv += ret;
/* parse app arguments */
ret = tep_termination_parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid argument\n");
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
if (rte_lcore_is_enabled(lcore_id))
lcore_ids[core_id++] = lcore_id;
/* set the number of swithcing cores available */
nb_switching_cores = rte_lcore_count()-1;
/* Get the number of physical ports. */
nb_ports = rte_eth_dev_count();
/*
* Update the global var NB_PORTS and global array PORTS
* and get value of var VALID_NB_PORTS according to system ports number
*/
valid_nb_ports = check_ports_num(nb_ports);
if ((valid_nb_ports == 0) || (valid_nb_ports > MAX_SUP_PORTS)) {
rte_exit(EXIT_FAILURE, "Current enabled port number is %u,"
"but only %u port can be enabled\n", nb_ports,
MAX_SUP_PORTS);
}
/* Create the mbuf pool. */
"MBUF_POOL",
NUM_MBUFS_PER_PORT * valid_nb_ports,
MBUF_CACHE_SIZE,
0,
MBUF_DATA_SIZE,
if (mbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
for (queue_id = 0; queue_id < MAX_QUEUES + 1; queue_id++)
vpool_array[queue_id].pool = mbuf_pool;
/* initialize all ports */
for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
RTE_LOG(INFO, VHOST_PORT,
"Skipping disabled port %d\n", portid);
continue;
}
if (overlay_options.port_configure(portid, mbuf_pool) != 0)
rte_exit(EXIT_FAILURE,
"Cannot initialize network ports\n");
}
/* Initialise all linked lists. */
if (init_data_ll() == -1)
rte_exit(EXIT_FAILURE, "Failed to initialize linked list\n");
/* Initialize device stats */
memset(&dev_statistics, 0, sizeof(dev_statistics));
/* Enable stats if the user option is set. */
if (enable_stats) {
ret = pthread_create(&tid, NULL, (void *)print_stats, NULL);
if (ret != 0)
rte_exit(EXIT_FAILURE, "Cannot create print-stats thread\n");
snprintf(thread_name, RTE_MAX_THREAD_NAME_LEN, "print-stats");
ret = rte_thread_setname(tid, thread_name);
if (ret != 0)
RTE_LOG(DEBUG, VHOST_CONFIG, "Cannot set print-stats name\n");
}
/* Launch all data cores. */
rte_eal_remote_launch(switch_worker,
mbuf_pool, lcore_id);
}
ret = rte_vhost_driver_register((char *)&dev_basename, 0);
if (ret != 0)
rte_exit(EXIT_FAILURE, "failed to register vhost driver.\n");
1ULL << VIRTIO_NET_F_MRG_RXBUF);
ret = rte_vhost_driver_callback_register(dev_basename,
&virtio_net_device_ops);
if (ret != 0) {
rte_exit(EXIT_FAILURE,
"failed to register vhost driver callbacks.\n");
}
if (rte_vhost_driver_start(dev_basename) < 0) {
rte_exit(EXIT_FAILURE,
"failed to start vhost driver.\n");
}
rte_eal_wait_lcore(lcore_id);
return 0;
}