
Proposed Database Schema
The primary keys for these tables are not shown; I will likely be implementing the 
database using the data modeling framework for whatever Web backend we wind up 
selecting, which will set up primary keys and table join relationships automatically.

Table specific notes:

patch: I propose that for this schema patches will be stored on the filesystem content-
addressable by the sha256 hash of the patch file.

patchset: "branch" refers to corresponding repo (master -> dpdk, dpdk-next-net -> 
dpdk/next-net, etc.). When a patchset is initally identified from a group patches (before it
is actually applied), the branch, commit_id, and tarball fields will be NULL. Tarballs will 
be stored as files named after patchset_id of patch 1 of the series (note that this is not 
necessarily the lowest patchworks id in the series depending on the order that 
patchworks “absorbed” the patches). Tests run against git master will have a “fake” 
patchset table entry with patchworks_id set to NULL, and “branch” and “commit_id” set 
accordingly, and the tarball will be named after the branch and commit_id fields.

test_run: Overall result for an entire test run. Tests are identified by their timestamp and
the environment that they were run on. “Official” tests were those kicked off by the 
appropriate triggers in Jenkins against git master or publicly submitted patches. 
“Unofficial” tests are manually run via Jenkins or manually running the script.

test_run_result: Result entry for a patchset. A patchset passes if there is a result for 
every measurement which is either PASS or N/A.

environment: This should represent everything about where the test was run and a 
new environment needs to be created every time this changes (e.g., kernel or compiler 
update). I gathered the list of fields by looking at the existing performance reports on the
DPDK website. This can be used for verification, to allow the test environment to be 
reproducible, and to ensure that all comparisons are within an identical setup. Custom 
field can be included via the environment_field table (which could be further split into a 
table which defines the field and a table which associates the field with a value for each 
environment, if we decided we wanted to go that far).

measurement: A single measurement which can be applied to any patchset. We can 
use values like (name: “BUILD”, higherIsBetter: TRUE, expectedValue: 1, deltaLimit: 0) 
to verify non-performance conditions, such as the build succeeding for the given 
environment.



patchset

branch string

commitID string

tarball string

patchworks_id int

patch

patchworks_id int

submitter_name string

submitter_email string

subject string

diff string

test_run_result

result string

absolute_value real

delta_value real

measurement

name string

higher_is_better bool

expected_value real

delta_limit real

environment

inventory_id string

motherboard_make string

motherboard_model string

motherboard_serial string

cpu_socket_count int

cpu_cores_per_socket int

cpu_threads_per_core int

ram_type string

ram_size_MB int

ram_channel_count int

ram_frequency_MHz int

nic_make string

nic_model string

nic_device_id int

nic_device_bustype string

nic_pmd string

nic_firmware_source_id string

nic_firmware_version string

kernel_version string

kernel_cmdline string

bios_settings string

bios_version string

compiler_name string

compiler_version string

dts_config string

environment_field

field_name string

field_value string

test_run

timestamp datetime

log_output_file string

is_official bool

Test Result Entity-Relationship Diagram Last Update: 11/28/2017 2:49 PM by Patrick MacArthur


