[dpdk-dev] [PATCH] librte_acl make it build/work for 'default' target

Konstantin Ananyev konstantin.ananyev at intel.com
Wed Aug 6 19:53:45 CEST 2014


Make ACL library to build/work on 'default' architecture:
- make rte_acl_classify_scalar really scalar
 (make sure it wouldn't use sse4 instrincts through resolve_priority()).
- Provide two versions of rte_acl_classify code path:
  rte_acl_classify_sse() - could be build and used only on systems with sse4.2
  and upper, return -ENOTSUP on lower arch.
  rte_acl_classify_scalar() - a slower version, but could be build and used
  on all systems.
- rte_acl_classify() - becomes just a macro pointing to one of the functions
  mentioned abovei (highest avaialbe version at build time).
- keep code common for both version code.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev at intel.com>
---
 lib/librte_acl/acl_bld.c           |   5 +-
 lib/librte_acl/acl_match_check.def |  92 +++++
 lib/librte_acl/acl_run.c           | 692 ++++---------------------------------
 lib/librte_acl/acl_run_sse.h       | 629 +++++++++++++++++++++++++++++++++
 lib/librte_acl/rte_acl.h           |  12 +-
 5 files changed, 806 insertions(+), 624 deletions(-)
 create mode 100644 lib/librte_acl/acl_match_check.def
 create mode 100644 lib/librte_acl/acl_run_sse.h

diff --git a/lib/librte_acl/acl_bld.c b/lib/librte_acl/acl_bld.c
index 873447b..09d58ea 100644
--- a/lib/librte_acl/acl_bld.c
+++ b/lib/librte_acl/acl_bld.c
@@ -31,7 +31,6 @@
  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
-#include <nmmintrin.h>
 #include <rte_acl.h>
 #include "tb_mem.h"
 #include "acl.h"
@@ -1480,8 +1479,8 @@ acl_calc_wildness(struct rte_acl_build_rule *head,
 
 			switch (rule->config->defs[n].type) {
 			case RTE_ACL_FIELD_TYPE_BITMASK:
-				wild = (size -
-					_mm_popcnt_u32(fld->mask_range.u8)) /
+				wild = (size - __builtin_popcount(
+					fld->mask_range.u8)) /
 					size;
 				break;
 
diff --git a/lib/librte_acl/acl_match_check.def b/lib/librte_acl/acl_match_check.def
new file mode 100644
index 0000000..8ff4ec3
--- /dev/null
+++ b/lib/librte_acl/acl_match_check.def
@@ -0,0 +1,92 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * Creates a definition for '__func_match_check__' function.
+ * '__func_resolve_priority__' should point to already  resolved function.
+ */
+
+#ifndef __func_match_check__
+#error __func_match_check__ undefined
+#endif
+
+#ifndef __func_resolve_priority__
+#error __func_resolve_priority__ undefined
+#endif
+
+
+/*
+ * Detect matches. If a match node transition is found, then this trie
+ * traversal is complete and fill the slot with the next trie
+ * to be processed.
+ */
+static inline uint64_t
+__func_match_check__(uint64_t transition, int slot,
+	const struct rte_acl_ctx *ctx, struct parms *parms,
+	struct acl_flow_data *flows)
+{
+	const struct rte_acl_match_results *p;
+
+	p = (const struct rte_acl_match_results *)
+		(flows->trans + ctx->match_index);
+
+	if (transition & RTE_ACL_NODE_MATCH) {
+
+		/* Remove flags from index and decrement active traversals */
+		transition &= RTE_ACL_NODE_INDEX;
+		flows->started--;
+
+		/* Resolve priorities for this trie and running results */
+		if (flows->categories == 1)
+			resolve_single_priority(transition, slot, ctx,
+				parms, p);
+		else
+			__func_resolve_priority__(transition, slot, ctx, parms,
+				p, flows->categories);
+
+		/* Count down completed tries for this search request */
+		parms[slot].cmplt->count--;
+
+		/* Fill the slot with the next trie or idle trie */
+		transition = acl_start_next_trie(flows, parms, slot, ctx);
+
+	} else if (transition == ctx->idle) {
+		/* reset indirection table for idle slots */
+		parms[slot].data_index = idle;
+	}
+
+	return transition;
+}
+
+#undef __func_match_check__
+#undef __func_resolve_priority__
diff --git a/lib/librte_acl/acl_run.c b/lib/librte_acl/acl_run.c
index e3d9fc1..f9646b8 100644
--- a/lib/librte_acl/acl_run.c
+++ b/lib/librte_acl/acl_run.c
@@ -50,13 +50,6 @@
 #define	SCALAR_QRANGE_MASK	0x7f7f7f7f
 #define	SCALAR_QRANGE_MIN	0x80808080
 
-enum {
-	SHUFFLE32_SLOT1 = 0xe5,
-	SHUFFLE32_SLOT2 = 0xe6,
-	SHUFFLE32_SLOT3 = 0xe7,
-	SHUFFLE32_SWAP64 = 0x4e,
-};
-
 /*
  * Structure to manage N parallel trie traversals.
  * The runtime trie traversal routines can process 8, 4, or 2 tries
@@ -111,80 +104,6 @@ struct parms {
  */
 static const uint32_t idle[UINT8_MAX + 1];
 
-static const rte_xmm_t mm_type_quad_range = {
-	.u32 = {
-		RTE_ACL_NODE_QRANGE,
-		RTE_ACL_NODE_QRANGE,
-		RTE_ACL_NODE_QRANGE,
-		RTE_ACL_NODE_QRANGE,
-	},
-};
-
-static const rte_xmm_t mm_type_quad_range64 = {
-	.u32 = {
-		RTE_ACL_NODE_QRANGE,
-		RTE_ACL_NODE_QRANGE,
-		0,
-		0,
-	},
-};
-
-static const rte_xmm_t mm_shuffle_input = {
-	.u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
-};
-
-static const rte_xmm_t mm_shuffle_input64 = {
-	.u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
-};
-
-static const rte_xmm_t mm_ones_16 = {
-	.u16 = {1, 1, 1, 1, 1, 1, 1, 1},
-};
-
-static const rte_xmm_t mm_bytes = {
-	.u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX},
-};
-
-static const rte_xmm_t mm_bytes64 = {
-	.u32 = {UINT8_MAX, UINT8_MAX, 0, 0},
-};
-
-static const rte_xmm_t mm_match_mask = {
-	.u32 = {
-		RTE_ACL_NODE_MATCH,
-		RTE_ACL_NODE_MATCH,
-		RTE_ACL_NODE_MATCH,
-		RTE_ACL_NODE_MATCH,
-	},
-};
-
-static const rte_xmm_t mm_match_mask64 = {
-	.u32 = {
-		RTE_ACL_NODE_MATCH,
-		0,
-		RTE_ACL_NODE_MATCH,
-		0,
-	},
-};
-
-static const rte_xmm_t mm_index_mask = {
-	.u32 = {
-		RTE_ACL_NODE_INDEX,
-		RTE_ACL_NODE_INDEX,
-		RTE_ACL_NODE_INDEX,
-		RTE_ACL_NODE_INDEX,
-	},
-};
-
-static const rte_xmm_t mm_index_mask64 = {
-	.u32 = {
-		RTE_ACL_NODE_INDEX,
-		RTE_ACL_NODE_INDEX,
-		0,
-		0,
-	},
-};
-
 /*
  * Allocate a completion structure to manage the tries for a packet.
  */
@@ -224,55 +143,67 @@ resolve_single_priority(uint64_t transition, int n,
 		parms[n].cmplt->priority[0] = p[transition].priority[0];
 		parms[n].cmplt->results[0] = p[transition].results[0];
 	}
-
-	parms[n].cmplt->count--;
 }
 
 /*
- * Resolve priority for multiple results. This consists comparing
- * the priority of the current traversal with the running set of
- * results for the packet. For each result, keep a running array of
- * the result (rule number) and its priority for each category.
+ * Resolve priority for multiple results (scalar version).
+ * This consists comparing the priority of the current traversal with the
+ * running set of results for the packet.
+ * For each result, keep a running array of the result (rule number) and
+ * its priority for each category.
  */
 static inline void
-resolve_priority(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
-	struct parms *parms, const struct rte_acl_match_results *p,
-	uint32_t categories)
+resolve_priority_scalar(uint64_t transition, int n,
+	const struct rte_acl_ctx *ctx, struct parms *parms,
+	const struct rte_acl_match_results *p, uint32_t categories)
 {
-	uint32_t x;
-	xmm_t results, priority, results1, priority1, selector;
-	xmm_t *saved_results, *saved_priority;
-
-	for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
-
-		saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
-		saved_priority =
-			(xmm_t *)(&parms[n].cmplt->priority[x]);
-
-		/* get results and priorities for completed trie */
-		results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
-		priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
-
-		/* if this is not the first completed trie */
-		if (parms[n].cmplt->count != ctx->num_tries) {
-
-			/* get running best results and their priorities */
-			results1 = MM_LOADU(saved_results);
-			priority1 = MM_LOADU(saved_priority);
-
-			/* select results that are highest priority */
-			selector = MM_CMPGT32(priority1, priority);
-			results = MM_BLENDV8(results, results1, selector);
-			priority = MM_BLENDV8(priority, priority1, selector);
+	uint32_t i;
+	int32_t *saved_priority;
+	uint32_t *saved_results;
+	const int32_t *priority;
+	const uint32_t *results;
+
+	saved_results = parms[n].cmplt->results;
+	saved_priority = parms[n].cmplt->priority;
+
+	/* results and priorities for completed trie */
+	results = p[transition].results;
+	priority = p[transition].priority;
+
+	/* if this is not the first completed trie */
+	if (parms[n].cmplt->count != ctx->num_tries) {
+		for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
+
+			if (saved_priority[i] <= priority[i]) {
+				saved_priority[i] = priority[i];
+				saved_results[i] = results[i];
+			}
+			if (saved_priority[i + 1] <= priority[i + 1]) {
+				saved_priority[i + 1] = priority[i + 1];
+				saved_results[i + 1] = results[i + 1];
+			}
+			if (saved_priority[i + 2] <= priority[i + 2]) {
+				saved_priority[i + 2] = priority[i + 2];
+				saved_results[i + 2] = results[i + 2];
+			}
+			if (saved_priority[i + 3] <= priority[i + 3]) {
+				saved_priority[i + 3] = priority[i + 3];
+				saved_results[i + 3] = results[i + 3];
+			}
+		}
+	} else {
+		for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
+			saved_priority[i] = priority[i];
+			saved_priority[i + 1] = priority[i + 1];
+			saved_priority[i + 2] = priority[i + 2];
+			saved_priority[i + 3] = priority[i + 3];
+
+			saved_results[i] = results[i];
+			saved_results[i + 1] = results[i + 1];
+			saved_results[i + 2] = results[i + 2];
+			saved_results[i + 3] = results[i + 3];
 		}
-
-		/* save running best results and their priorities */
-		MM_STOREU(saved_results, results);
-		MM_STOREU(saved_priority, priority);
 	}
-
-	/* Count down completed tries for this search request */
-	parms[n].cmplt->count--;
 }
 
 /*
@@ -326,230 +257,9 @@ acl_start_next_trie(struct acl_flow_data *flows, struct parms *parms, int n,
 	return transition;
 }
 
-/*
- * Detect matches. If a match node transition is found, then this trie
- * traversal is complete and fill the slot with the next trie
- * to be processed.
- */
-static inline uint64_t
-acl_match_check_transition(uint64_t transition, int slot,
-	const struct rte_acl_ctx *ctx, struct parms *parms,
-	struct acl_flow_data *flows)
-{
-	const struct rte_acl_match_results *p;
-
-	p = (const struct rte_acl_match_results *)
-		(flows->trans + ctx->match_index);
-
-	if (transition & RTE_ACL_NODE_MATCH) {
-
-		/* Remove flags from index and decrement active traversals */
-		transition &= RTE_ACL_NODE_INDEX;
-		flows->started--;
-
-		/* Resolve priorities for this trie and running results */
-		if (flows->categories == 1)
-			resolve_single_priority(transition, slot, ctx,
-				parms, p);
-		else
-			resolve_priority(transition, slot, ctx, parms, p,
-				flows->categories);
-
-		/* Fill the slot with the next trie or idle trie */
-		transition = acl_start_next_trie(flows, parms, slot, ctx);
-
-	} else if (transition == ctx->idle) {
-		/* reset indirection table for idle slots */
-		parms[slot].data_index = idle;
-	}
-
-	return transition;
-}
-
-/*
- * Extract transitions from an XMM register and check for any matches
- */
-static void
-acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx,
-	struct parms *parms, struct acl_flow_data *flows)
-{
-	uint64_t transition1, transition2;
-
-	/* extract transition from low 64 bits. */
-	transition1 = MM_CVT64(*indicies);
-
-	/* extract transition from high 64 bits. */
-	*indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64);
-	transition2 = MM_CVT64(*indicies);
-
-	transition1 = acl_match_check_transition(transition1, slot, ctx,
-		parms, flows);
-	transition2 = acl_match_check_transition(transition2, slot + 1, ctx,
-		parms, flows);
-
-	/* update indicies with new transitions. */
-	*indicies = MM_SET64(transition2, transition1);
-}
-
-/*
- * Check for a match in 2 transitions (contained in SSE register)
- */
-static inline void
-acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
-	struct acl_flow_data *flows, xmm_t *indicies, xmm_t match_mask)
-{
-	xmm_t temp;
-
-	temp = MM_AND(match_mask, *indicies);
-	while (!MM_TESTZ(temp, temp)) {
-		acl_process_matches(indicies, slot, ctx, parms, flows);
-		temp = MM_AND(match_mask, *indicies);
-	}
-}
-
-/*
- * Check for any match in 4 transitions (contained in 2 SSE registers)
- */
-static inline void
-acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
-	struct acl_flow_data *flows, xmm_t *indicies1, xmm_t *indicies2,
-	xmm_t match_mask)
-{
-	xmm_t temp;
-
-	/* put low 32 bits of each transition into one register */
-	temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
-		0x88);
-	/* test for match node */
-	temp = MM_AND(match_mask, temp);
-
-	while (!MM_TESTZ(temp, temp)) {
-		acl_process_matches(indicies1, slot, ctx, parms, flows);
-		acl_process_matches(indicies2, slot + 2, ctx, parms, flows);
-
-		temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
-					(__m128)*indicies2,
-					0x88);
-		temp = MM_AND(match_mask, temp);
-	}
-}
-
-/*
- * Calculate the address of the next transition for
- * all types of nodes. Note that only DFA nodes and range
- * nodes actually transition to another node. Match
- * nodes don't move.
- */
-static inline xmm_t
-acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
-	xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
-	xmm_t *indicies1, xmm_t *indicies2)
-{
-	xmm_t addr, node_types, temp;
-
-	/*
-	 * Note that no transition is done for a match
-	 * node and therefore a stream freezes when
-	 * it reaches a match.
-	 */
-
-	/* Shuffle low 32 into temp and high 32 into indicies2 */
-	temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
-		0x88);
-	*indicies2 = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
-		(__m128)*indicies2, 0xdd);
-
-	/* Calc node type and node addr */
-	node_types = MM_ANDNOT(index_mask, temp);
-	addr = MM_AND(index_mask, temp);
-
-	/*
-	 * Calc addr for DFAs - addr = dfa_index + input_byte
-	 */
-
-	/* mask for DFA type (0) nodes */
-	temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types));
-
-	/* add input byte to DFA position */
-	temp = MM_AND(temp, bytes);
-	temp = MM_AND(temp, next_input);
-	addr = MM_ADD32(addr, temp);
-
-	/*
-	 * Calc addr for Range nodes -> range_index + range(input)
-	 */
-	node_types = MM_CMPEQ32(node_types, type_quad_range);
-
-	/*
-	 * Calculate number of range boundaries that are less than the
-	 * input value. Range boundaries for each node are in signed 8 bit,
-	 * ordered from -128 to 127 in the indicies2 register.
-	 * This is effectively a popcnt of bytes that are greater than the
-	 * input byte.
-	 */
-
-	/* shuffle input byte to all 4 positions of 32 bit value */
-	temp = MM_SHUFFLE8(next_input, shuffle_input);
-
-	/* check ranges */
-	temp = MM_CMPGT8(temp, *indicies2);
-
-	/* convert -1 to 1 (bytes greater than input byte */
-	temp = MM_SIGN8(temp, temp);
-
-	/* horizontal add pairs of bytes into words */
-	temp = MM_MADD8(temp, temp);
-
-	/* horizontal add pairs of words into dwords */
-	temp = MM_MADD16(temp, ones_16);
-
-	/* mask to range type nodes */
-	temp = MM_AND(temp, node_types);
-
-	/* add index into node position */
-	return MM_ADD32(addr, temp);
-}
-
-/*
- * Process 4 transitions (in 2 SIMD registers) in parallel
- */
-static inline xmm_t
-transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
-	xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
-	const uint64_t *trans, xmm_t *indicies1, xmm_t *indicies2)
-{
-	xmm_t addr;
-	uint64_t trans0, trans2;
-
-	 /* Calculate the address (array index) for all 4 transitions. */
-
-	addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
-		bytes, type_quad_range, indicies1, indicies2);
-
-	 /* Gather 64 bit transitions and pack back into 2 registers. */
-
-	trans0 = trans[MM_CVT32(addr)];
-
-	/* get slot 2 */
-
-	/* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
-	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
-	trans2 = trans[MM_CVT32(addr)];
-
-	/* get slot 1 */
-
-	/* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
-	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
-	*indicies1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
-
-	/* get slot 3 */
-
-	/* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
-	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
-	*indicies2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
-
-	return MM_SRL32(next_input, 8);
-}
+#define	__func_resolve_priority__	resolve_priority_scalar
+#define	__func_match_check__		acl_match_check_scalar
+#include "acl_match_check.def"
 
 static inline void
 acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
@@ -570,264 +280,6 @@ acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
 }
 
 /*
- * Execute trie traversal with 8 traversals in parallel
- */
-static inline void
-search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
-	uint32_t *results, uint32_t total_packets, uint32_t categories)
-{
-	int n;
-	struct acl_flow_data flows;
-	uint64_t index_array[MAX_SEARCHES_SSE8];
-	struct completion cmplt[MAX_SEARCHES_SSE8];
-	struct parms parms[MAX_SEARCHES_SSE8];
-	xmm_t input0, input1;
-	xmm_t indicies1, indicies2, indicies3, indicies4;
-
-	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
-		total_packets, categories, ctx->trans_table);
-
-	for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
-		cmplt[n].count = 0;
-		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
-	}
-
-	/*
-	 * indicies1 contains index_array[0,1]
-	 * indicies2 contains index_array[2,3]
-	 * indicies3 contains index_array[4,5]
-	 * indicies4 contains index_array[6,7]
-	 */
-
-	indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
-	indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
-
-	indicies3 = MM_LOADU((xmm_t *) &index_array[4]);
-	indicies4 = MM_LOADU((xmm_t *) &index_array[6]);
-
-	 /* Check for any matches. */
-	acl_match_check_x4(0, ctx, parms, &flows,
-		&indicies1, &indicies2, mm_match_mask.m);
-	acl_match_check_x4(4, ctx, parms, &flows,
-		&indicies3, &indicies4, mm_match_mask.m);
-
-	while (flows.started > 0) {
-
-		/* Gather 4 bytes of input data for each stream. */
-		input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0),
-			0);
-		input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4),
-			0);
-
-		input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
-		input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
-
-		input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
-		input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
-
-		input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
-		input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
-
-		 /* Process the 4 bytes of input on each stream. */
-
-		input0 = transition4(mm_index_mask.m, input0,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies1, &indicies2);
-
-		input1 = transition4(mm_index_mask.m, input1,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies3, &indicies4);
-
-		input0 = transition4(mm_index_mask.m, input0,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies1, &indicies2);
-
-		input1 = transition4(mm_index_mask.m, input1,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies3, &indicies4);
-
-		input0 = transition4(mm_index_mask.m, input0,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies1, &indicies2);
-
-		input1 = transition4(mm_index_mask.m, input1,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies3, &indicies4);
-
-		input0 = transition4(mm_index_mask.m, input0,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies1, &indicies2);
-
-		input1 = transition4(mm_index_mask.m, input1,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies3, &indicies4);
-
-		 /* Check for any matches. */
-		acl_match_check_x4(0, ctx, parms, &flows,
-			&indicies1, &indicies2, mm_match_mask.m);
-		acl_match_check_x4(4, ctx, parms, &flows,
-			&indicies3, &indicies4, mm_match_mask.m);
-	}
-}
-
-/*
- * Execute trie traversal with 4 traversals in parallel
- */
-static inline void
-search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
-	 uint32_t *results, int total_packets, uint32_t categories)
-{
-	int n;
-	struct acl_flow_data flows;
-	uint64_t index_array[MAX_SEARCHES_SSE4];
-	struct completion cmplt[MAX_SEARCHES_SSE4];
-	struct parms parms[MAX_SEARCHES_SSE4];
-	xmm_t input, indicies1, indicies2;
-
-	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
-		total_packets, categories, ctx->trans_table);
-
-	for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
-		cmplt[n].count = 0;
-		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
-	}
-
-	indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
-	indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
-
-	/* Check for any matches. */
-	acl_match_check_x4(0, ctx, parms, &flows,
-		&indicies1, &indicies2, mm_match_mask.m);
-
-	while (flows.started > 0) {
-
-		/* Gather 4 bytes of input data for each stream. */
-		input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
-		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
-		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
-		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
-
-		/* Process the 4 bytes of input on each stream. */
-		input = transition4(mm_index_mask.m, input,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies1, &indicies2);
-
-		 input = transition4(mm_index_mask.m, input,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies1, &indicies2);
-
-		 input = transition4(mm_index_mask.m, input,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies1, &indicies2);
-
-		 input = transition4(mm_index_mask.m, input,
-			mm_shuffle_input.m, mm_ones_16.m,
-			mm_bytes.m, mm_type_quad_range.m,
-			flows.trans, &indicies1, &indicies2);
-
-		/* Check for any matches. */
-		acl_match_check_x4(0, ctx, parms, &flows,
-			&indicies1, &indicies2, mm_match_mask.m);
-	}
-}
-
-static inline xmm_t
-transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
-	xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
-	const uint64_t *trans, xmm_t *indicies1)
-{
-	uint64_t t;
-	xmm_t addr, indicies2;
-
-	indicies2 = MM_XOR(ones_16, ones_16);
-
-	addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
-		bytes, type_quad_range, indicies1, &indicies2);
-
-	/* Gather 64 bit transitions and pack 2 per register. */
-
-	t = trans[MM_CVT32(addr)];
-
-	/* get slot 1 */
-	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
-	*indicies1 = MM_SET64(trans[MM_CVT32(addr)], t);
-
-	return MM_SRL32(next_input, 8);
-}
-
-/*
- * Execute trie traversal with 2 traversals in parallel.
- */
-static inline void
-search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
-	uint32_t *results, uint32_t total_packets, uint32_t categories)
-{
-	int n;
-	struct acl_flow_data flows;
-	uint64_t index_array[MAX_SEARCHES_SSE2];
-	struct completion cmplt[MAX_SEARCHES_SSE2];
-	struct parms parms[MAX_SEARCHES_SSE2];
-	xmm_t input, indicies;
-
-	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
-		total_packets, categories, ctx->trans_table);
-
-	for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
-		cmplt[n].count = 0;
-		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
-	}
-
-	indicies = MM_LOADU((xmm_t *) &index_array[0]);
-
-	/* Check for any matches. */
-	acl_match_check_x2(0, ctx, parms, &flows, &indicies, mm_match_mask64.m);
-
-	while (flows.started > 0) {
-
-		/* Gather 4 bytes of input data for each stream. */
-		input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
-		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
-
-		/* Process the 4 bytes of input on each stream. */
-
-		input = transition2(mm_index_mask64.m, input,
-			mm_shuffle_input64.m, mm_ones_16.m,
-			mm_bytes64.m, mm_type_quad_range64.m,
-			flows.trans, &indicies);
-
-		input = transition2(mm_index_mask64.m, input,
-			mm_shuffle_input64.m, mm_ones_16.m,
-			mm_bytes64.m, mm_type_quad_range64.m,
-			flows.trans, &indicies);
-
-		input = transition2(mm_index_mask64.m, input,
-			mm_shuffle_input64.m, mm_ones_16.m,
-			mm_bytes64.m, mm_type_quad_range64.m,
-			flows.trans, &indicies);
-
-		input = transition2(mm_index_mask64.m, input,
-			mm_shuffle_input64.m, mm_ones_16.m,
-			mm_bytes64.m, mm_type_quad_range64.m,
-			flows.trans, &indicies);
-
-		/* Check for any matches. */
-		acl_match_check_x2(0, ctx, parms, &flows, &indicies,
-			mm_match_mask64.m);
-	}
-}
-
-/*
  * When processing the transition, rather than using if/else
  * construct, the offset is calculated for DFA and QRANGE and
  * then conditionally added to the address based on node type.
@@ -915,9 +367,9 @@ rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
 
 		}
 		if ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
-			transition0 = acl_match_check_transition(transition0,
+			transition0 = acl_match_check_scalar(transition0,
 				0, ctx, parms, &flows);
-			transition1 = acl_match_check_transition(transition1,
+			transition1 = acl_match_check_scalar(transition1,
 				1, ctx, parms, &flows);
 
 		}
@@ -925,20 +377,20 @@ rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
 	return 0;
 }
 
-int
-rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
-	uint32_t *results, uint32_t num, uint32_t categories)
-{
-	if (categories != 1 &&
-		((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
-		return -EINVAL;
+#ifdef __SSE4_1__
 
-	if (likely(num >= MAX_SEARCHES_SSE8))
-		search_sse_8(ctx, data, results, num, categories);
-	else if (num >= MAX_SEARCHES_SSE4)
-		search_sse_4(ctx, data, results, num, categories);
-	else
-		search_sse_2(ctx, data, results, num, categories);
+#include "acl_run_sse.h"
 
-	return 0;
+#else
+
+int
+rte_acl_classify_sse(__rte_unused const struct rte_acl_ctx *ctx,
+	__rte_unused const uint8_t **data,
+	__rte_unused uint32_t *results,
+	__rte_unused uint32_t num,
+	__rte_unused uint32_t categories)
+{
+	return -(ENOTSUP);
 }
+
+#endif /* __SSE4_1__ */
diff --git a/lib/librte_acl/acl_run_sse.h b/lib/librte_acl/acl_run_sse.h
new file mode 100644
index 0000000..3ce4c1e
--- /dev/null
+++ b/lib/librte_acl/acl_run_sse.h
@@ -0,0 +1,629 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef	_ACL_RUN_SSE_H_
+#define	_ACL_RUN_SSE_H_
+
+enum {
+	SHUFFLE32_SLOT1 = 0xe5,
+	SHUFFLE32_SLOT2 = 0xe6,
+	SHUFFLE32_SLOT3 = 0xe7,
+	SHUFFLE32_SWAP64 = 0x4e,
+};
+
+static const rte_xmm_t mm_type_quad_range = {
+	.u32 = {
+		RTE_ACL_NODE_QRANGE,
+		RTE_ACL_NODE_QRANGE,
+		RTE_ACL_NODE_QRANGE,
+		RTE_ACL_NODE_QRANGE,
+	},
+};
+
+static const rte_xmm_t mm_type_quad_range64 = {
+	.u32 = {
+		RTE_ACL_NODE_QRANGE,
+		RTE_ACL_NODE_QRANGE,
+		0,
+		0,
+	},
+};
+
+static const rte_xmm_t mm_shuffle_input = {
+	.u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
+};
+
+static const rte_xmm_t mm_shuffle_input64 = {
+	.u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
+};
+
+static const rte_xmm_t mm_ones_16 = {
+	.u16 = {1, 1, 1, 1, 1, 1, 1, 1},
+};
+
+static const rte_xmm_t mm_bytes = {
+	.u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX},
+};
+
+static const rte_xmm_t mm_bytes64 = {
+	.u32 = {UINT8_MAX, UINT8_MAX, 0, 0},
+};
+
+static const rte_xmm_t mm_match_mask = {
+	.u32 = {
+		RTE_ACL_NODE_MATCH,
+		RTE_ACL_NODE_MATCH,
+		RTE_ACL_NODE_MATCH,
+		RTE_ACL_NODE_MATCH,
+	},
+};
+
+static const rte_xmm_t mm_match_mask64 = {
+	.u32 = {
+		RTE_ACL_NODE_MATCH,
+		0,
+		RTE_ACL_NODE_MATCH,
+		0,
+	},
+};
+
+static const rte_xmm_t mm_index_mask = {
+	.u32 = {
+		RTE_ACL_NODE_INDEX,
+		RTE_ACL_NODE_INDEX,
+		RTE_ACL_NODE_INDEX,
+		RTE_ACL_NODE_INDEX,
+	},
+};
+
+static const rte_xmm_t mm_index_mask64 = {
+	.u32 = {
+		RTE_ACL_NODE_INDEX,
+		RTE_ACL_NODE_INDEX,
+		0,
+		0,
+	},
+};
+
+
+/*
+ * Resolve priority for multiple results (sse version).
+ * This consists comparing the priority of the current traversal with the
+ * running set of results for the packet.
+ * For each result, keep a running array of the result (rule number) and
+ * its priority for each category.
+ */
+static inline void
+resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
+	struct parms *parms, const struct rte_acl_match_results *p,
+	uint32_t categories)
+{
+	uint32_t x;
+	xmm_t results, priority, results1, priority1, selector;
+	xmm_t *saved_results, *saved_priority;
+
+	for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
+
+		saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
+		saved_priority =
+			(xmm_t *)(&parms[n].cmplt->priority[x]);
+
+		/* get results and priorities for completed trie */
+		results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
+		priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
+
+		/* if this is not the first completed trie */
+		if (parms[n].cmplt->count != ctx->num_tries) {
+
+			/* get running best results and their priorities */
+			results1 = MM_LOADU(saved_results);
+			priority1 = MM_LOADU(saved_priority);
+
+			/* select results that are highest priority */
+			selector = MM_CMPGT32(priority1, priority);
+			results = MM_BLENDV8(results, results1, selector);
+			priority = MM_BLENDV8(priority, priority1, selector);
+		}
+
+		/* save running best results and their priorities */
+		MM_STOREU(saved_results, results);
+		MM_STOREU(saved_priority, priority);
+	}
+}
+
+#define	__func_resolve_priority__	resolve_priority_sse
+#define	__func_match_check__		acl_match_check_sse
+#include "acl_match_check.def"
+
+/*
+ * Extract transitions from an XMM register and check for any matches
+ */
+static void
+acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx,
+	struct parms *parms, struct acl_flow_data *flows)
+{
+	uint64_t transition1, transition2;
+
+	/* extract transition from low 64 bits. */
+	transition1 = MM_CVT64(*indicies);
+
+	/* extract transition from high 64 bits. */
+	*indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64);
+	transition2 = MM_CVT64(*indicies);
+
+	transition1 = acl_match_check_sse(transition1, slot, ctx,
+		parms, flows);
+	transition2 = acl_match_check_sse(transition2, slot + 1, ctx,
+		parms, flows);
+
+	/* update indicies with new transitions. */
+	*indicies = MM_SET64(transition2, transition1);
+}
+
+/*
+ * Check for a match in 2 transitions (contained in SSE register)
+ */
+static inline void
+acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
+	struct acl_flow_data *flows, xmm_t *indicies, xmm_t match_mask)
+{
+	xmm_t temp;
+
+	temp = MM_AND(match_mask, *indicies);
+	while (!MM_TESTZ(temp, temp)) {
+		acl_process_matches(indicies, slot, ctx, parms, flows);
+		temp = MM_AND(match_mask, *indicies);
+	}
+}
+
+/*
+ * Check for any match in 4 transitions (contained in 2 SSE registers)
+ */
+static inline void
+acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
+	struct acl_flow_data *flows, xmm_t *indicies1, xmm_t *indicies2,
+	xmm_t match_mask)
+{
+	xmm_t temp;
+
+	/* put low 32 bits of each transition into one register */
+	temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
+		0x88);
+	/* test for match node */
+	temp = MM_AND(match_mask, temp);
+
+	while (!MM_TESTZ(temp, temp)) {
+		acl_process_matches(indicies1, slot, ctx, parms, flows);
+		acl_process_matches(indicies2, slot + 2, ctx, parms, flows);
+
+		temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
+					(__m128)*indicies2,
+					0x88);
+		temp = MM_AND(match_mask, temp);
+	}
+}
+
+/*
+ * Calculate the address of the next transition for
+ * all types of nodes. Note that only DFA nodes and range
+ * nodes actually transition to another node. Match
+ * nodes don't move.
+ */
+static inline xmm_t
+acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
+	xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
+	xmm_t *indicies1, xmm_t *indicies2)
+{
+	xmm_t addr, node_types, temp;
+
+	/*
+	 * Note that no transition is done for a match
+	 * node and therefore a stream freezes when
+	 * it reaches a match.
+	 */
+
+	/* Shuffle low 32 into temp and high 32 into indicies2 */
+	temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
+		0x88);
+	*indicies2 = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
+		(__m128)*indicies2, 0xdd);
+
+	/* Calc node type and node addr */
+	node_types = MM_ANDNOT(index_mask, temp);
+	addr = MM_AND(index_mask, temp);
+
+	/*
+	 * Calc addr for DFAs - addr = dfa_index + input_byte
+	 */
+
+	/* mask for DFA type (0) nodes */
+	temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types));
+
+	/* add input byte to DFA position */
+	temp = MM_AND(temp, bytes);
+	temp = MM_AND(temp, next_input);
+	addr = MM_ADD32(addr, temp);
+
+	/*
+	 * Calc addr for Range nodes -> range_index + range(input)
+	 */
+	node_types = MM_CMPEQ32(node_types, type_quad_range);
+
+	/*
+	 * Calculate number of range boundaries that are less than the
+	 * input value. Range boundaries for each node are in signed 8 bit,
+	 * ordered from -128 to 127 in the indicies2 register.
+	 * This is effectively a popcnt of bytes that are greater than the
+	 * input byte.
+	 */
+
+	/* shuffle input byte to all 4 positions of 32 bit value */
+	temp = MM_SHUFFLE8(next_input, shuffle_input);
+
+	/* check ranges */
+	temp = MM_CMPGT8(temp, *indicies2);
+
+	/* convert -1 to 1 (bytes greater than input byte */
+	temp = MM_SIGN8(temp, temp);
+
+	/* horizontal add pairs of bytes into words */
+	temp = MM_MADD8(temp, temp);
+
+	/* horizontal add pairs of words into dwords */
+	temp = MM_MADD16(temp, ones_16);
+
+	/* mask to range type nodes */
+	temp = MM_AND(temp, node_types);
+
+	/* add index into node position */
+	return MM_ADD32(addr, temp);
+}
+
+/*
+ * Process 4 transitions (in 2 SIMD registers) in parallel
+ */
+static inline xmm_t
+transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
+	xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
+	const uint64_t *trans, xmm_t *indicies1, xmm_t *indicies2)
+{
+	xmm_t addr;
+	uint64_t trans0, trans2;
+
+	 /* Calculate the address (array index) for all 4 transitions. */
+
+	addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
+		bytes, type_quad_range, indicies1, indicies2);
+
+	 /* Gather 64 bit transitions and pack back into 2 registers. */
+
+	trans0 = trans[MM_CVT32(addr)];
+
+	/* get slot 2 */
+
+	/* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
+	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
+	trans2 = trans[MM_CVT32(addr)];
+
+	/* get slot 1 */
+
+	/* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
+	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
+	*indicies1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
+
+	/* get slot 3 */
+
+	/* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
+	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
+	*indicies2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
+
+	return MM_SRL32(next_input, 8);
+}
+
+/*
+ * Execute trie traversal with 8 traversals in parallel
+ */
+static inline void
+search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
+	uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+	int n;
+	struct acl_flow_data flows;
+	uint64_t index_array[MAX_SEARCHES_SSE8];
+	struct completion cmplt[MAX_SEARCHES_SSE8];
+	struct parms parms[MAX_SEARCHES_SSE8];
+	xmm_t input0, input1;
+	xmm_t indicies1, indicies2, indicies3, indicies4;
+
+	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+		total_packets, categories, ctx->trans_table);
+
+	for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
+		cmplt[n].count = 0;
+		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+	}
+
+	/*
+	 * indicies1 contains index_array[0,1]
+	 * indicies2 contains index_array[2,3]
+	 * indicies3 contains index_array[4,5]
+	 * indicies4 contains index_array[6,7]
+	 */
+
+	indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
+	indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
+
+	indicies3 = MM_LOADU((xmm_t *) &index_array[4]);
+	indicies4 = MM_LOADU((xmm_t *) &index_array[6]);
+
+	 /* Check for any matches. */
+	acl_match_check_x4(0, ctx, parms, &flows,
+		&indicies1, &indicies2, mm_match_mask.m);
+	acl_match_check_x4(4, ctx, parms, &flows,
+		&indicies3, &indicies4, mm_match_mask.m);
+
+	while (flows.started > 0) {
+
+		/* Gather 4 bytes of input data for each stream. */
+		input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0),
+			0);
+		input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4),
+			0);
+
+		input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
+		input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
+
+		input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
+		input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
+
+		input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
+		input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
+
+		 /* Process the 4 bytes of input on each stream. */
+
+		input0 = transition4(mm_index_mask.m, input0,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies1, &indicies2);
+
+		input1 = transition4(mm_index_mask.m, input1,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies3, &indicies4);
+
+		input0 = transition4(mm_index_mask.m, input0,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies1, &indicies2);
+
+		input1 = transition4(mm_index_mask.m, input1,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies3, &indicies4);
+
+		input0 = transition4(mm_index_mask.m, input0,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies1, &indicies2);
+
+		input1 = transition4(mm_index_mask.m, input1,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies3, &indicies4);
+
+		input0 = transition4(mm_index_mask.m, input0,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies1, &indicies2);
+
+		input1 = transition4(mm_index_mask.m, input1,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies3, &indicies4);
+
+		 /* Check for any matches. */
+		acl_match_check_x4(0, ctx, parms, &flows,
+			&indicies1, &indicies2, mm_match_mask.m);
+		acl_match_check_x4(4, ctx, parms, &flows,
+			&indicies3, &indicies4, mm_match_mask.m);
+	}
+}
+
+/*
+ * Execute trie traversal with 4 traversals in parallel
+ */
+static inline void
+search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
+	 uint32_t *results, int total_packets, uint32_t categories)
+{
+	int n;
+	struct acl_flow_data flows;
+	uint64_t index_array[MAX_SEARCHES_SSE4];
+	struct completion cmplt[MAX_SEARCHES_SSE4];
+	struct parms parms[MAX_SEARCHES_SSE4];
+	xmm_t input, indicies1, indicies2;
+
+	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+		total_packets, categories, ctx->trans_table);
+
+	for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
+		cmplt[n].count = 0;
+		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+	}
+
+	indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
+	indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
+
+	/* Check for any matches. */
+	acl_match_check_x4(0, ctx, parms, &flows,
+		&indicies1, &indicies2, mm_match_mask.m);
+
+	while (flows.started > 0) {
+
+		/* Gather 4 bytes of input data for each stream. */
+		input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
+		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
+		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
+		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
+
+		/* Process the 4 bytes of input on each stream. */
+		input = transition4(mm_index_mask.m, input,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies1, &indicies2);
+
+		 input = transition4(mm_index_mask.m, input,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies1, &indicies2);
+
+		 input = transition4(mm_index_mask.m, input,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies1, &indicies2);
+
+		 input = transition4(mm_index_mask.m, input,
+			mm_shuffle_input.m, mm_ones_16.m,
+			mm_bytes.m, mm_type_quad_range.m,
+			flows.trans, &indicies1, &indicies2);
+
+		/* Check for any matches. */
+		acl_match_check_x4(0, ctx, parms, &flows,
+			&indicies1, &indicies2, mm_match_mask.m);
+	}
+}
+
+static inline xmm_t
+transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
+	xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
+	const uint64_t *trans, xmm_t *indicies1)
+{
+	uint64_t t;
+	xmm_t addr, indicies2;
+
+	indicies2 = MM_XOR(ones_16, ones_16);
+
+	addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
+		bytes, type_quad_range, indicies1, &indicies2);
+
+	/* Gather 64 bit transitions and pack 2 per register. */
+
+	t = trans[MM_CVT32(addr)];
+
+	/* get slot 1 */
+	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
+	*indicies1 = MM_SET64(trans[MM_CVT32(addr)], t);
+
+	return MM_SRL32(next_input, 8);
+}
+
+/*
+ * Execute trie traversal with 2 traversals in parallel.
+ */
+static inline void
+search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
+	uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+	int n;
+	struct acl_flow_data flows;
+	uint64_t index_array[MAX_SEARCHES_SSE2];
+	struct completion cmplt[MAX_SEARCHES_SSE2];
+	struct parms parms[MAX_SEARCHES_SSE2];
+	xmm_t input, indicies;
+
+	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+		total_packets, categories, ctx->trans_table);
+
+	for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
+		cmplt[n].count = 0;
+		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+	}
+
+	indicies = MM_LOADU((xmm_t *) &index_array[0]);
+
+	/* Check for any matches. */
+	acl_match_check_x2(0, ctx, parms, &flows, &indicies, mm_match_mask64.m);
+
+	while (flows.started > 0) {
+
+		/* Gather 4 bytes of input data for each stream. */
+		input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
+		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
+
+		/* Process the 4 bytes of input on each stream. */
+
+		input = transition2(mm_index_mask64.m, input,
+			mm_shuffle_input64.m, mm_ones_16.m,
+			mm_bytes64.m, mm_type_quad_range64.m,
+			flows.trans, &indicies);
+
+		input = transition2(mm_index_mask64.m, input,
+			mm_shuffle_input64.m, mm_ones_16.m,
+			mm_bytes64.m, mm_type_quad_range64.m,
+			flows.trans, &indicies);
+
+		input = transition2(mm_index_mask64.m, input,
+			mm_shuffle_input64.m, mm_ones_16.m,
+			mm_bytes64.m, mm_type_quad_range64.m,
+			flows.trans, &indicies);
+
+		input = transition2(mm_index_mask64.m, input,
+			mm_shuffle_input64.m, mm_ones_16.m,
+			mm_bytes64.m, mm_type_quad_range64.m,
+			flows.trans, &indicies);
+
+		/* Check for any matches. */
+		acl_match_check_x2(0, ctx, parms, &flows, &indicies,
+			mm_match_mask64.m);
+	}
+}
+
+int
+rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
+	uint32_t *results, uint32_t num, uint32_t categories)
+{
+	if (categories != 1 &&
+		((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
+		return -EINVAL;
+
+	if (likely(num >= MAX_SEARCHES_SSE8))
+		search_sse_8(ctx, data, results, num, categories);
+	else if (num >= MAX_SEARCHES_SSE4)
+		search_sse_4(ctx, data, results, num, categories);
+	else
+		search_sse_2(ctx, data, results, num, categories);
+
+	return 0;
+}
+
+#endif	/* _ACL_RUN_SSE_H_ */
diff --git a/lib/librte_acl/rte_acl.h b/lib/librte_acl/rte_acl.h
index afc0f69..ab4965f 100644
--- a/lib/librte_acl/rte_acl.h
+++ b/lib/librte_acl/rte_acl.h
@@ -267,6 +267,7 @@ rte_acl_reset(struct rte_acl_ctx *ctx);
  * RTE_ACL_RESULTS_MULTIPLIER and can't be bigger than RTE_ACL_MAX_CATEGORIES.
  * If more than one rule is applicable for given input buffer and
  * given category, then rule with highest priority will be returned as a match.
+ * Note, that it requires SSE4.1 support.
  * Note, that it is a caller responsibility to ensure that input parameters
  * are valid and point to correct memory locations.
  *
@@ -286,9 +287,10 @@ rte_acl_reset(struct rte_acl_ctx *ctx);
  * @return
  *   zero on successful completion.
  *   -EINVAL for incorrect arguments.
+ *   -ENOTSUP for unsupported platforms.
  */
 int
-rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
+rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
 	uint32_t *results, uint32_t num, uint32_t categories);
 
 /**
@@ -327,6 +329,14 @@ int
 rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
 	uint32_t *results, uint32_t num, uint32_t categories);
 
+#ifdef __SSE4_1__
+#define	rte_acl_classify(ctx, data, results, num, categories)	\
+	rte_acl_classify_sse(ctx, data, results, num, categories)
+#else
+#define	rte_acl_classify(ctx, data, results, num, categories)	\
+	rte_acl_classify_scalar(ctx, data, results, num, categories)
+#endif /* __SSE4_1__ */
+
 /**
  * Dump an ACL context structure to the console.
  *
-- 
1.8.5.3



More information about the dev mailing list