[dpdk-dev] [PATCH] ring: guarantee ordering of cons/prod loading when doing enqueue/dequeue

Jia He hejianet at gmail.com
Tue Oct 24 04:04:26 CEST 2017


Hi Jerin


On 10/23/2017 6:06 PM, Jerin Jacob Wrote:
> -----Original Message-----
>> Date: Mon, 23 Oct 2017 16:49:01 +0800
>> From: Jia He <hejianet at gmail.com>
>> To: Jerin Jacob <jerin.jacob at caviumnetworks.com>
>> Cc: "Ananyev, Konstantin" <konstantin.ananyev at intel.com>, "Zhao, Bing"
>>   <ilovethull at 163.com>, Olivier MATZ <olivier.matz at 6wind.com>,
>>   "dev at dpdk.org" <dev at dpdk.org>, "jia.he at hxt-semitech.com"
>>   <jia.he at hxt-semitech.com>, "jie2.liu at hxt-semitech.com"
>>   <jie2.liu at hxt-semitech.com>, "bing.zhao at hxt-semitech.com"
>>   <bing.zhao at hxt-semitech.com>, "Richardson, Bruce"
>>   <bruce.richardson at intel.com>
>> Subject: Re: [dpdk-dev] [PATCH] ring: guarantee ordering of cons/prod
>>   loading when doing enqueue/dequeue
>> User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:52.0) Gecko/20100101
>>   Thunderbird/52.4.0
>>
>> Hi Jerin
>>
>>
>> On 10/20/2017 1:43 PM, Jerin Jacob Wrote:
>>> -----Original Message-----
>> [...]
>>>> dependant on each other.
>>>> Thus a memory barrier is neccessary.
>>> Yes. The barrier is necessary.
>>> In fact, upstream freebsd fixed this issue for arm64. DPDK ring
>>> implementation is derived from freebsd's buf_ring.h.
>>> https://github.com/freebsd/freebsd/blob/master/sys/sys/buf_ring.h#L166
>>>
>>> I think, the only outstanding issue is, how to reduce the performance
>>> impact for arm64. I believe using accurate/release semantics instead
>>> of rte_smp_rmb() will reduce the performance overhead like similar ring implementations below,
>>> freebsd: https://github.com/freebsd/freebsd/blob/master/sys/sys/buf_ring.h#L166
>>> odp: https://github.com/Linaro/odp/blob/master/platform/linux-generic/pktio/ring.c
>>>
>>> Jia,
>>> 1) Can you verify the use of accurate/release semantics fixes the problem in your
>>> platform? like use of atomic_load_acq* in the reference code.
>>> 2) If so, What is the overhead between accurate/release and plane smp_smb()
>>> barriers. Based on that we need decide what path to take.
>> I've tested 3 cases.  The new 3rd case is to use the load_acquire barrier
>> (half barrier) you mentioned
>> at above link.
>> The patch seems like:
>> @@ -408,8 +466,8 @@ __rte_ring_move_prod_head(struct rte_ring *r, int is_sp,
>>                  /* Reset n to the initial burst count */
>>                  n = max;
>>
>> -               *old_head = r->prod.head;
>> -               const uint32_t cons_tail = r->cons.tail;
>> +               *old_head = atomic_load_acq_32(&r->prod.head);
>> +               const uint32_t cons_tail =
>> atomic_load_acq_32(&r->cons.tail);
>>
>> @@ -516,14 +576,15 @@ __rte_ring_move_cons_head(struct rte_ring *r, int is_s
>>                  /* Restore n as it may change every loop */
>>                  n = max;
>>
>> -               *old_head = r->cons.head;
>> -               const uint32_t prod_tail = r->prod.tail;
>> +               *old_head = atomic_load_acq_32(&r->cons.head);
>> +               const uint32_t prod_tail = atomic_load_acq_32(&r->prod.tail)
>>                  /* The subtraction is done between two unsigned 32bits value
>>                   * (the result is always modulo 32 bits even if we have
>>                   * cons_head > prod_tail). So 'entries' is always between 0
>>                   * and size(ring)-1. */
>>
>> The half barrier patch passed the fuctional test.
>>
>> As for the performance comparision on *arm64*(the debug patch is at
>> http://dpdk.org/ml/archives/dev/2017-October/079012.html), please see the
>> test results
>> below:
>>
>> [case 1] old codes, no barrier
>> ============================================
>>   Performance counter stats for './test --no-huge -l 1-10':
>>
>>       689275.001200      task-clock (msec)         #    9.771 CPUs utilized
>>                6223      context-switches          #    0.009 K/sec
>>                  10      cpu-migrations            #    0.000 K/sec
>>                 653      page-faults               #    0.001 K/sec
>>       1721190914583      cycles                    #    2.497 GHz
>>       3363238266430      instructions              #    1.95  insn per cycle
>>     <not supported> branches
>>            27804740      branch-misses             #    0.00% of all branches
>>
>>        70.540618825 seconds time elapsed
>>
>> [case 2] full barrier with rte_smp_rmb()
>> ============================================
>>   Performance counter stats for './test --no-huge -l 1-10':
>>
>>       582557.895850      task-clock (msec)         #    9.752 CPUs utilized
>>                5242      context-switches          #    0.009 K/sec
>>                  10      cpu-migrations            #    0.000 K/sec
>>                 665      page-faults               #    0.001 K/sec
>>       1454360730055      cycles                    #    2.497 GHz
>>        587197839907      instructions              #    0.40  insn per cycle
>>     <not supported> branches
>>            27799687      branch-misses             #    0.00% of all branches
>>
>>        59.735582356 seconds time elapse
>>
>> [case 1] half barrier with load_acquire
>> ============================================
>>   Performance counter stats for './test --no-huge -l 1-10':
>>
>>       660758.877050      task-clock (msec)         #    9.764 CPUs utilized
>>                5982      context-switches          #    0.009 K/sec
>>                  11      cpu-migrations            #    0.000 K/sec
>>                 657      page-faults               #    0.001 K/sec
>>       1649875318044      cycles                    #    2.497 GHz
>>        591583257765      instructions              #    0.36  insn per cycle
>>     <not supported> branches
>>            27994903      branch-misses             #    0.00% of all branches
>>
>>        67.672855107 seconds time elapsed
>>
>> Please see the context-switches in the perf results
>> test result  sorted by time is:
>> full barrier < half barrier < no barrier
>>
>> AFAICT, in this case ,the cpu reordering will add the possibility for
>> context switching and
>> increase the running time.
>> Any ideas?
> Regarding performance test, it better to use ring perf test case
> on _isolated_ cores to measure impact on number of enqueue/dequeue operations.
>
> example:
> ./build/app/test -c 0xff -n 4
>>> ring_perf_autotest
Seem in our arm64 server, the ring_perf_autotest will be finished in a 
few seconds:
Anything wrong about configuration or environment setup?

root at ubuntu:/home/hj/dpdk/build/build/test/test# ./test -c 0xff -n 4
EAL: Detected 44 lcore(s)
EAL: Probing VFIO support...
APP: HPET is not enabled, using TSC as default timer
RTE>>per_lcore_autotest
RTE>>ring_perf_autotest
### Testing single element and burst enq/deq ###
SP/SC single enq/dequeue: 0
MP/MC single enq/dequeue: 2
SP/SC burst enq/dequeue (size: 8): 0
MP/MC burst enq/dequeue (size: 8): 0
SP/SC burst enq/dequeue (size: 32): 0
MP/MC burst enq/dequeue (size: 32): 0

### Testing empty dequeue ###
SC empty dequeue: 0.02
MC empty dequeue: 0.04

### Testing using a single lcore ###
SP/SC bulk enq/dequeue (size: 8): 0.12
MP/MC bulk enq/dequeue (size: 8): 0.31
SP/SC bulk enq/dequeue (size: 32): 0.05
MP/MC bulk enq/dequeue (size: 32): 0.09

### Testing using two hyperthreads ###
SP/SC bulk enq/dequeue (size: 8): 0.12
MP/MC bulk enq/dequeue (size: 8): 0.39
SP/SC bulk enq/dequeue (size: 32): 0.04
MP/MC bulk enq/dequeue (size: 32): 0.12

### Testing using two physical cores ###
SP/SC bulk enq/dequeue (size: 8): 0.37
MP/MC bulk enq/dequeue (size: 8): 0.92
SP/SC bulk enq/dequeue (size: 32): 0.12
MP/MC bulk enq/dequeue (size: 32): 0.26
Test OK
RTE>>

Cheers,
Jia
> By default, arm64+dpdk will be using el0 counter to measure the cycles. I
> think, in your SoC, it will be running at 50MHz or 100MHz.So, You can
> follow the below scheme to get accurate cycle measurement scheme:
>
> See: http://dpdk.org/doc/guides/prog_guide/profile_app.html
> check: 44.2.2. High-resolution cycle counter



More information about the dev mailing list