
Port Hot-plugging
Framework for DPDK

November 2014
Tetsuya Mukawa

mukawa@igel.co.jp

Overview

 I sent a patch-set to add a port hot-plugging
feature into the DPDK EAL. It allows DPDK apps
to attach or detach a physical or virtual device
port at runtime.

My implementation is straight-forward. When
either the attach or detach function that my patch-
set added is called, all the data structures for
managing ports should be updated.
– It assumes that added physical ports must be initialized

appropriately through the PCI hot-plug framework in
the kernel.

2

The Current Status of my Impl.

We need to modify the following modules for the hot-
plugging feature.
– DPDK apps

• testpmd … working now

– EAL framework
… working now

– PMDs
• pcap PMD … working now.
• Other PMDs … not started yet.

 I’ve got some comments from Intel guy. Now I am preparing
v2 patchset. But the design and behavior would be mostly
unchanged. 3

Testpmd
(working now)

DPDK EAL
(Working now)

pcap PMD
(Working

now)

Other
PMDs

(Not yet)

Links to my (v1) patchset in the
DPDK patchwork site (1/4)
 [01/25] eal/pci: Add a new flag indicating a driver can detach devices

at runtime.
– http://dpdk.org/dev/patchwork/patch/1364/

 [02/25] ethdev: Remove assumption that port will not be detached
– http://dpdk.org/dev/patchwork/patch/1365/

 [03/25] eal/pci: Replace pci address comparison code by
eal_compare_pci_addr
– http://dpdk.org/dev/patchwork/patch/1366/

 [04/25] ethdev: Add rte_eth_dev_free to free specified device
– http://dpdk.org/dev/patchwork/patch/1367/

 [05/25] eal, ethdev: Add function pointer for closing a device
– http://dpdk.org/dev/patchwork/patch/1368/

 [06/25] ethdev: Add rte_eth_dev_shutdown for closing PCI devices.
– http://dpdk.org/dev/patchwork/patch/1369/

 [07/25] ethdev: Add functions to know which port is attached or
detached
– http://dpdk.org/dev/patchwork/patch/1370/

4

Links to my (v1) patchset in the
DPDK patchwork site (2/4)

 [08/25] ethdev: Add rte_eth_dev_get_addr_by_port
– http://dpdk.org/dev/patchwork/patch/1371/

 [09/25] ethdev: Add rte_eth_dev_get_port_by_addr
– http://dpdk.org/dev/patchwork/patch/1372/

 [10/25] ethdev: Add rte_eth_dev_get_name_by_port
– http://dpdk.org/dev/patchwork/patch/1373/

 [11/25] ethdev: Add rte_eth_dev_check_detachable
– http://dpdk.org/dev/patchwork/patch/1374/

 [12/25] ethdev: Change scope of rte_eth_dev_allocated to global
– http://dpdk.org/dev/patchwork/patch/1375/

 [13/25] eal/pci: Prevent double registration for devargs_list
– http://dpdk.org/dev/patchwork/patch/1376/

 [14/25] eal/pci: Add rte_eal_devargs_remove
– http://dpdk.org/dev/patchwork/patch/1377/

5

Links to my (v1) patchset in the
DPDK patchwork site (3/4)

 [15/25] eal/pci: Add probe and close function for virtual drivers
– http://dpdk.org/dev/patchwork/patch/1378/

 [16/25] eal/pci: Add port hotplug functions for virtual devices
– http://dpdk.org/dev/patchwork/patch/1379/

 [17/25] eal/linux/pci: Add functions for unmapping igb_uio resources
– http://dpdk.org/dev/patchwork/patch/1380/

 [18/25] eal/pci: Prevent double registrations for pci_device_list
– http://dpdk.org/dev/patchwork/patch/1381/

 [19/25] eal/pci: Change scope of rte_eal_pci_scan to global
– http://dpdk.org/dev/patchwork/patch/1382/

 [20/25] eal/pci: Add rte_eal_pci_close_one_driver
– http://dpdk.org/dev/patchwork/patch/1383/

 [21/25] eal/pci: Fix pci_probe_all_drivers to share code with closing
function
– http://dpdk.org/dev/patchwork/patch/1384/

6

Links to my (v1) patchset in the
DPDK patchwork site (4/4)

 [22/25] eal/pci: Add pci_close_all_drivers
– http://dpdk.org/dev/patchwork/patch/1385/

 [23/25] eal/pci: Add rte_eal_pci_probe_one and rte_eal_pci_close_one
– http://dpdk.org/dev/patchwork/patch/1386/

 [24/25] eal/pci: Add port hotplug functions for physical devices
– http://dpdk.org/dev/patchwork/patch/1387/

 [25/25] eal: Enable port hotplug framework in Linux
– http://dpdk.org/dev/patchwork/patch/1388/

 librte_pmd_pcap: Add port hotplug support
– http://dpdk.org/dev/patchwork/patch/1389/

 testpmd: Add port hotplug support
– http://dpdk.org/dev/patchwork/patch/1390/

7

Appendix

8

Basic concept
~ DPDK apps must have responsibility to manage ports ~

– DPDK apps only know which ports are attached or detached at the
moment.

– The port hotplug framework is implemented to allow DPDK apps to
manage ports. For example, when DPDK apps call port attach
function, attached port number will be returned. Also DPDK apps
can detach a port by specifying a port id.

9

Hotplug Framework in EAL

DPDK Apps

port_id = attach(); detach(port_id);

port management structure

Basic concept
~ Kernel support is needed for plugging physical device ports ~

– To attach new device, the device will be recognized by
kernel at first and controlled by kernel driver. Then user
can bind the device to igb_uio by 'dpdk_nic_bind.py'.
Finally, DPDK apps can call the port hotplug functions
to attach ports. For detaching, steps are vice versa.

10

User inserts
a new NIC

Kernel
recognizes

the NIC

User binds
the NIC to
igb_uio.

DPDK app
attaches the

NIC(port)

Basic concept
~ Before detach ports, ports must be stopped and closed ~

– DPDK application must call rte_eth_dev_stop() and
rte_eth_dev_close() before detaching ports.

– These function will call finalization codes of PMDs. But so far, no
PMD frees all resources allocated by initialization. It means PMDs
are needed to be fixed to support the port hotplug.
'RTE_PCI_DRV_DETACHABLE' is a new flag indicating a PMD
supports detaching. Without this flag, detaching will be failed.

11

DPDK app
calls stop()

DPDK app
calls close()

DPDK app
detaches

port.

PMD frees
all

resources

Basic concept
~ This framework mustn't affect legacy DPDK apps ~

– If the port hotplug functions aren't called, no EAL
behavior is changed.

– So all legacy DPDK apps can still work without
modifications.

12

Limitations

 The port hotplug functions are not thread safe.
DPDK apps should handle it.

Only support Linux and igb_uio so far.
– BSD, pci_uio_generic and VFIO is not supported.

13

Let’s see how it works
~ Attaching a virtual device port ~

 Execute testpmd.
 Attach a virtual port.

14

Termnal1
$ sudo testpmd -c f -n 1 -d librte_pmd_null.so -- -i --no-flush-rx
.....
testpmd> show port info all
testpmd>
testpmd> port attach v eth_null0
Attaching a new port...
PMD: Initializing pmd_null for eth_null0
PMD: Configure pmd_null: packet size is 64, packet copy is disabled
PMD: Creating null ethdev on numa socket 0
Port 0 is attached. Now total ports is 1
Done
testpmd> show port info all

********************* Infos for port 0 *********************
MAC address: 00:00:00:00:00:00
Connect to socket: 0
memory allocation on the socket: 0
Link status: down
Link speed: 10000 Mbps
Link duplex: full-duplex
Promiscuous mode: disabled
Allmulticast mode: disabled
Maximum number of MAC addresses: 1
Maximum number of MAC addresses of hash filtering: 0
VLAN offload:
strip off
filter off
qinq(extend) off

No port here

Attach Port

We got Port0

 Null PMD
 http://dpdk.org/dev/patchwork/patch/686/
 I will show how it’s useful for testing and

developping.To merge the PMD, it must
be reviewed. Someone, could you please
do it?

 When you use Null PMD with testpmd, --
no-flush-rx option is needed.

 To work with hotplug framework, PMD
should be fixed. The patch for Null PMD
has not been submitted yet.

Let’s see how it works
~ Attaching a physical device port ~

15

$ sudo ./tools/dpdk_nic_bind.py --status

Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:02:00.0 '82572EI Gigabit Ethernet Controller (Copper)' if=p4p1
drv=e1000e unused=igb_uio

Other network devices
=====================
<none>
$ sudo ./tools/dpdk_nic_bind.py -b igb_uio 0000:02:00.0
$ sudo ./tools/dpdk_nic_bind.py --status

Network devices using DPDK-compatible driver
==
0000:02:00.0 '82572EI Gigabit Ethernet Controller (Copper)' drv=igb_uio
unused=

Network devices using kernel driver
===================================
<none>

Other network devices
=====================
<none>

No port here

Attach Port

We got port

Termnal2
 Open “Terminal2”.
 Switch to igb_uio.

Let’s see how it works
~ Attaching a physical device port ~ (contd.)

16

testpmd> port attach p 0000:02:00.0
Attaching a new port...
EAL: PCI device 0000:02:00.0 on NUMA socket -1
EAL: probe driver: 8086:10b9 rte_em_pmd
EAL: PCI memory mapped at 0x7ffff7f81000
EAL: PCI memory mapped at 0x7ffff7f61000
PMD: eth_em_dev_init(): port_id 1 vendorID=0x8086 deviceID=0x10b9
Port 1 is attached. Now total ports is 2
Done
testpmd> show port info all

********************* Infos for port 0 *********************
........snip.......
********************* Infos for port 1 *********************
MAC address: 00:1B:21:2D:E5:53
Connect to socket: 0
memory allocation on the socket: 0
Link status: up
Link speed: 1000 Mbps
Link duplex: full-duplex
Promiscuous mode: enabled
Allmulticast mode: disabled
Maximum number of MAC addresses: 15
Maximum number of MAC addresses of hash filtering: 0
VLAN offload:
strip off
filter off
qinq(extend) off

Attach Port

We got Port1

Termnal1
 Open “Terminal1”.
 Attach a physical port

Let’s see how it works
~ Packet forwarding ~

17

testpmd> port start all
testpmd> start
testpmd> stop
Telling cores to stop...
Waiting for lcores to finish...

---------------------- Forward statistics for port 0 ----------------------
RX-packets: 92453792 RX-dropped: 0 RX-total: 92453792
TX-packets: 0 TX-dropped: 0 TX-total: 0
--

---------------------- Forward statistics for port 1 ----------------------
RX-packets: 0 RX-dropped: 0 RX-total: 0
TX-packets: 2714270 TX-dropped: 89738977 TX-total: 92453247
--

+++++++++++++++ Accumulated forward statistics for all
ports+++++++++++++++
RX-packets: 92453792 RX-dropped: 0 RX-total: 92453792
TX-packets: 2714270 TX-dropped: 89738977 TX-total: 92453247

++
++++++++++++++++

Done.

Termnal1
 Open “Terminal1”.
 Start all ports.
 Start packet forwarding.
 Stop packet forwarding.

Let’s see how it works
~ Detach ports ~

18

testpmd> port stop all
Stopping ports...
Checking link statuses...
Port 0 Link Down
Port 1 Link Down
Done
testpmd> port close all
Closing ports...
Done
testpmd> port detach p 1
Detaching a port...
EAL: PCI device 0000:02:00.0 on NUMA socket -1
EAL: remove driver: 8086:10b9 rte_em_pmd
EAL: PCI memory mapped at 0x7ffff7f81000
EAL: PCI memory mapped at 0x7ffff7f61000
Port '0000.02.00.0' is detached. Now total ports is 1
Done
testpmd> port detach v 0
Detaching a port...
PMD: Closing null ethdev on numa socket 0
Port 'eth_null0' is detached. Now total ports is 0
Done
testpmd> show port info all
testpmd>

Termnal1
 Open “Terminal1”.
 Stop all ports
 Close all ports
 Detach ports

– You can detach ports in any order.

 After detaching a physical port, you
can switch to kernel device driver
again using “dpdk_nic_bind.py”

Detach Port1

Detach Port0

No port here

Let’s see how it works
~ Example ~

19

testpmd> port attach v eth_null0
testpmd> port attach v eth_null1
testpmd> port attach v eth_null2
testpmd> port attach v eth_null3
testpmd> port stop 0
testpmd> port stop 2
testpmd> port close 0
testpmd> port close 2
testpmd> port detach v 0
testpmd> port detach v 2
testpmd> port start all
testpmd> start
testpmd> stop
---------------------- Forward statistics for port 1 ----------------------
RX-packets: 31774496 RX-dropped: 0 RX-total: 31774496
TX-packets: 31774496 TX-dropped: 0 TX-total: 31774496
--
---------------------- Forward statistics for port 3 ----------------------
RX-packets: 31774496 RX-dropped: 0 RX-total: 31774496
TX-packets: 31774496 TX-dropped: 0 TX-total: 31774496
--
+++++++++++++++ Accumulated forward statistics for all ports+++++++++++++++
RX-packets: 63548992 RX-dropped: 0 RX-total: 63548992
TX-packets: 63548992 TX-dropped: 0 TX-total: 63548992
+++

Done.
testpmd>

Termnal1
 It’s very flexible. We

can do like that.
Attach 4 ports

Detach Ports0 and
Port3

Packet forwarding
between port1 and port3

