
©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

#moveforward

Design Considerations for a High-Performing
Virtualized LTE Core Infrastructure

Arun Rajagopal
Sprint CTO Office

Sameh Gobriel
Intel Labs

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Current EPC Network Infrastructure

#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Carrier Business Problems
Rigid capacity models lead to inefficient utilization of
network resources
Capacity added when one dimension exhausts (e.g., signaling vs. bearer capacity on
SBC)
Difficult to align service revenue with costs (e.g., low volume M2M)
No means to re-use stranded capacity on platforms

Long time-to-market intervals for new products/services
Long service development processes with limited service agility
Limited fast fail opportunities and platform re-usability

Rapid service scaling is a challenge
Adding new capacity to existing services takes time
Managing scale by adding additional hardware and using load balancing mechanisms is
complex
More nodes/elements to manage as the function scales

Lack of
Service
Agility

Rapid and just-in-
time service scaling

Rigid
network

build models

#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

©2014 Sprint This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain
restricted, confidential or privileged materials intended for the sole use of the intended recipient Any review, use, distribution or disclosure is
prohibited without authorization

The Case for NFV

Simplifies Network
Architecture

• Common hardware

• Independent scaling of components

• Standard and repeatable

configurations

Simplifies Network
Operations

• Just-in-time allocation

• Automated deployment

• Automated capacity add

• Agile, high velocity service creation

environment

Creates New Revenue
Opportunities

• Combine Mobility and call control

with cloud technologies

• Monetize network based on service

value

Lower Capex Lower Opex Higher Revenue
#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

#moveforward

From Purpose Built ASICs to General Purpose IA

SG
W

PD
N

G

W

M
M

E

PC
RF

vEPC

SG
W

PD
N

G

W

vEPC

SG
W

PD
N

G

W

vEPC

SG
W

PD
N

G

W

vEPC

Internet

eNode B

How to build a scalable EPC cluster on
IA servers?

 Fully programmable control &
data planes

 Incrementally scalable as needed
by adding nodes to the cluster

 S/P GW ported as DPDK Apps on
top of IA Cluster.

 Leverages multi-core/socket,
DDIO, SSE instructions, ..etc.

A first step towards a flexible network
infrastructure

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Flow Table Size and Packet Classification Bottleneck

• EPC SGW session table size grow significantly (millions of entries) with the number of
subscribers/bearers/flows.

• Flow lookup and Packet classification is common for many VNFs.
• Distributed flow table as a single entity to control/management plane.

SG
W

PD
N

G

W

M
M

E

PC
RF

vEPC

SG
W

PD
N

G

W

vEPC

SG
W

PD
N

G

W

vEPC

SG
W

PD
N

G

W

vEPC

Internet

eNode B

(1) Single Node
Optimization

(2) Cluster Level
Optimization

#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Flow Lookup & Classification Bottleneck for NFV
• Flow lookup and Classification a common operation for many network functions.

• NFV workload will typically have large flow table sizes

 M1[1]

Q[1] Q[2] Q[3]

M2[1]

M3[1]

M1[2] M1[3]

M2[2] M2[3]

M3[2] M3[3]

search lines

match lines

search word

encoder

• ASICs, NPUs uses TCAM to address this bottleneck.
• TCAMs sizes are very limited

#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Flow Lookup & Classification Bottleneck for NFV

Cuckoo Hashing

IP A IP H

IP P

IP J IP B

IP Q

IP D IP W

Traditional Hashing

IP Y

IP Z

IP X

1

2

3

H1 H2

Traditional J-hash library:

• relies on a “sparse” hash table
implementation

• Simple exact match implementation

• Significant performance degradation with
increased table sizes.

Cuckoo Hashing – Better Scalability:

• Denser tables fit in cache.

• Can scale to millions of entries.

• Significant throughput improvement

Available for DPDK v2.1

#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Cuckoo Hashing [Pagh ‘01]

B C

D

F

F

G

E

A

#moveforward

Presenter
Presentation Notes
Basic scheme: each element gets two possible locations.
To insert x, check both locations for x. If one is empty, insert.
If both are full, x kicks out an old element y. Then y moves to its other location.
If that location is full, y kicks out z, and so on, until an empty slot is found.

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Performance benefits of CH w/ DPDK
Improvement on table efficiency

~40% Throughput increase

Memory bandwidth significantly reduced due to higher cache utilization

Traditional hash

0.00

500.00

1,000.00

1,500.00

2,000.00

2,500.00

3,000.00

10 1M 4M

Memory bandwidth vs. # of entries

rte_hash

Cuckoo

Traditional hash

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

1M 2M 4M 8M 16M 32M

Throughput vs. # of entries

rte_hash

Cuckoo
Traditional hash

Single Core Table Insertions per second

0

1

2

3

4

5

6

7

8

9

0% 10% 20% 30% 40% 50% 60% 70% 80%

In
se

rt
s /

 S
ec

on
d

M
ill

io
ns

Table Load

Cuckoo Hash Insert Performance

32M Random

8M Random

2M Random

32M Sequential

15X

#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Distributed software flow lookup

A C

B

D

Partial FIB

Full Duplication Hash Partitioning Scalable Switch Route
Forward (S2RF)

Nodes store FULL copy of FIB
Pros: Design simplicity, scales
throughput
Cons: FIB does not scale as FIB
capacity does not increase with the
number of nodes in the cluster

Node stores ONLY a portion of the FIB based
on the hash of the keys (destination address,
flow identifier …)
Pros: Design simplicity, near linear scalability
Cons: Latency w/ extra hop, increased
interconnect load and CPU load for IO
bouncing, potential traffic hot spots (w/
elephant flows)

Nodes keep globally-replicated but extremely
compact, and fast, table (Global Partition Table)
mapping keys to lookup nodes
FIB partitioned so lookup node for packet is
also its egress node
Pros: No extra latency and interconnect load,
min resources required

A C

B

D

Full FIB

“Improving Clustered Network Appliances with
Xbricks”, Sigcomm ‘15

A C

B

D

GPT +
Partial FIB

#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Lookup Table Space Optimization for GPT

Main Idea:
Throw away keys (from cache), Use perfect hashing to avoid collision

For k-bit keys and v-bit values can we use O(v)
instead of O(k + v) bits/entry ?

KEY: k bits VAL: v bits

Ren

Dave

Christian

Dong

Sameh

Online/offline Status

Christian 0
Dong 1

Dave 0

Sameh 1

Ren 1

Ren

Dong

Sameh

Christian

Dave

H(Ren) = 1

H(Dave) = 0

H(Dong) = 1

H(Sameh) = 1

H(Christian) = 0

Ren

Dave

Christian

Dong

Sameh

Online/offline Status

#moveforward

Presenter
Presentation Notes
All through this talk, we particularly consider a type of mapping, where the keys could be arbitrarily large while each value only costs only a few bits to represent. An extreme case is mapping arbitrary keys to a boolean value. In practice, such key-value mappings could be, (1) building a network Switch which maps each known address from a huge address space to one of its ports to forward; another example is to map each user in a social network to one of its 2 status: online or offline.

The example we show here is to store the mapping from users’ name to his/her online/offline status. Let us first take a look at what happens if we use conventional hash table to store the mapping from arbitrary keys to a small range of values. Here is an typical hash table. First of all, a hash table can hardly be 100% utilized in space. In fact traditional hashing scheme usually only ensure about half of the table space unutilized; second, we need to store the keys in the hash table for full key comparison under hash collision. the amount of space required is at least the total size of keys and values plus a constant fraction of unutilized space. As a result, when the values are tiny in size, these space inefficiencies become a huge overhead, using conventional hash table,

----- Meeting Notes (5/10/13 15:00) -----
introduce what the example is
bigger "x bits, y bits“

In contrast, in this talk, we seek the opportunity to just use the space as large as the value, regardless of the key size. The benefit of doing this is, if the total amount of keys and values exceeds the memory capacity, but keeping only the values fits in memory, then we could still provide memory-speed lookups even the entire key-value data set is out of memory. So how can we achieve this? our core idea is to throw away the keys. But without keys, how can we handle hash collisions? We propose to eliminate hash collisions using more computation in construction time. Eliminating the space of storing keys is the major reason why we could build lookup tables much smaller than using conventional hash tables.

----- Meeting Notes (5/7/13 12:55) -----
brute force,
instead of O(|V|+|K|)
----- Meeting Notes (5/10/13 15:04) -----
throw keys
brute force to avoid collision.

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Store m for this group of keys

Target
Value

H1(x) H2(x) … Hm(x)

key1 0 0 1 0

key2 1 0 1 1

…

key16 0 0 0 0

GPT: From One Group to Many Groups

All keys

group1 group2 group3 group4

H376

Store hash function index for each
group of keys

H97 H62 H7

#moveforward

Presenter
Presentation Notes
To be more specific, for a given set of keys, we seek a hash function H which hahes each key in this set to its right value. As the example I show here, it hashes Bin, Dong and Hyeontaek to 1 and the other two names to 0. So the next questions are, how we can find such a hash function efficiently, and how we can store this hash function efficiently?

We use brute-force to generate a hash function for a small group of keys(e.g., 16 keys). Briefly speaking, we have a cheap way to generate parameterized hash functions. In other words, given a parameter i, we have a hash function H_i, given another parameter i+1, we have another different hash function H_{i+1}. Each key in this group has a target value in {0,1}, then we enumerate hash functions in the family, And record the parameter which gives the correct mapping.
----- Meeting Notes (5/8/13 13:18) -----
hash function family
a + i b

----- Meeting Notes (5/10/13 15:12) -----
circle linking k and store "K"
virtical lines

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

S2RF Code Snippet

void NxtHopTableUpdate(tNxtHopTable *table, U32 key, U8 value)
{
 U32 h = CheapHash(key);
 U32 chunkId = h % table->numChunks;
 U32 binId = (h / table->numChunks) % NXTHOPTABLE_CHUNK_NUM_BINS;
 U8 choice_chunk = table->chunks[chunkId].choiceList[binId / 4];
 int i, offset = (binId & 0x3) * 2;
 U8 choice = (U8)((choice_chunk >> offset) & 0x3);
 U32 groupId = binPerm[choice][binId];
 for (i = 0; i < table->chunkRuleList[chunkId].groupSize[groupId]; ++i)
 if (table->chunkRuleList[chunkId].groupRuleList[groupId][i].ip == key)
 {
 table->chunkRuleList[chunkId].groupRuleList[groupId][i].Id = value;
 break;
 }
 int ret = SearchHash(table, table->chunkRuleList[chunkId].groupSize[groupId],
 table->chunkRuleList[chunkId].groupRuleList[groupId])}

GPT Update

void NxtHopTableLookupMulti(tNxtHopTable *table, int numKeys, U32 *keyList, U8
*valueList) {
…
 for (i = 0; i < numKeys; i++) {
 U32 h = CheapHash(keyList[i]);
 chunkIdList[i] = h % table->numChunks;
 binIdList[i] = (h / table->numChunks) % NXTHOPTABLE_CHUNK_NUM_BINS;
 rte_prefetch0(&table->chunks[chunkIdList[i]].choiceList[binIdList[i]); }

 for (i = 0; i < numKeys; i++) {
 choiceList[i] = GetChoice(table, chunkIdList[i], binIdList[i]);
 groupIdList[i] = BinToGroup(binIdList[i], choiceList[i]);
 rte_prefetch0(&table->chunks[chunkIdList[i]].groups[groupIdList[i]]); }

 for (i = 0; i < numKeys; i++) {
 hashValA[i] = NXTHOPTABLE_HASHFUNCA(keyList[i]);
 hashValB[i] = NXTHOPTABLE_HASHFUNCB(keyList[i]);
 valueList[i] = 0;

 for (bit = 0; bit < NXTHOPTABLE_VALUE_SIZE_MAX; bit++) {
 U16 hashFuncIdx;
 U16 lookupTbl;
 GetGroup(
 &table->chunks[chunkIdList[i]].groups[groupIdList[i]],
 NXTHOPTABLE_VALUE_SIZE_MAX - bit - 1,
 &hashFuncIdx, &lookupTbl)
 valueList[i] = LookupBit(table, hashFuncIdx, lookupTbl);
 }

Update  finding a new hash function that
satisfies the new value

GPT Lookup

Lookup  hash computation knowing the
group hash index

Find group_id using
cheap hash

Using hash index do
lookup

#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

S2RF Performance Quantification

• SNB @ 2.2Ghz, 20 MB LLC
• 4-Node Cluster, 16*10 Gbps Niantic vector driver/DPDK
• IPv4 random traffic, i.e. 1/N on local node, ¾ on remote node

Single Core Table Insertions per second

Scales Linearly with number of cores

~35% Better Throughput

0

1

2

3

4

5

6

7

8

9

0% 10% 20% 30% 40% 50% 60% 70%

In
se

rt
s /

 S
ec

on
d

M
ill

io
ns

Table Load

Global Table Insert Performance

32M Sequential

8M Sequential

2M Sequential

Full
Duplication

#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Best Practices for Efficient Packet processing
Avoiding serialization in the packet-processing pipeline, including serializing events
such as locks, special instructions such as CLFLUSH, and large critical sections
Accessing data from the cache where possible by making use of prefetch
instructions and observing best practices in design of the software pipeline
Designing data structures to be cache-aligned and avoiding occurrences of data
being spread across two cache lines, partial writes, and contention between write
and read operations
Maintaining affinity between software threads and hardware threads, as well as
isolating software threads from one another with regard to scheduling relative to
hardware threads
Breaking down user-plane functionality so that it can be implemented with a
combination of RTC (Run to Completion) and pipeline methods
Use of pre-tuned open source optimized software components like DPDK

#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Summary

Lack of
Service Agility

Rapid and just-in-
time service scaling

Rigid network
build models

• Scalable Switch Route Forward
(S2RF) helps address some of the
scaling challenges in carrier networks
 Scales linearly the number of ports and

flow classification size with the number of
nodes in a cluster

 Uses DPDK and IA optimizations for
efficient packet processing and I/O
performance

#moveforward

©2015 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted,
confidential or privileged materials intended for the sole use of the intended recipient. Any review, use, distribution or disclosure is prohibited without authorization.

Questions

#moveforward

	Design Considerations for a High-Performing Virtualized LTE Core Infrastructure
	Current EPC Network Infrastructure
	Carrier Business Problems
	The Case for NFV
	Slide Number 5
	Flow Table Size and Packet Classification Bottleneck	
	Flow Lookup & Classification Bottleneck for NFV
	Flow Lookup & Classification Bottleneck for NFV
	Cuckoo Hashing [Pagh ‘01]
	Performance benefits of CH w/ DPDK
	Distributed software flow lookup
	Slide Number 12
	Slide Number 13
	S2RF Code Snippet	
	S2RF Performance Quantification
	Best Practices for Efficient Packet processing
	Summary
	Questions

