


1. Motivation
2. DPDK Packet Framework Libraries: librte_port, librte_table, librte_pipeline
3. Application Generator: ip_pipeline
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Configuration file:

— Defines the application structure by gluing together all pipeline instances. By using
different configuration files, different applications are generated

— All the application resources are created and configured through it

— Syntax is “define by reference”: first time a resource name is detected, it is registered
with default parameters, which can be refined through dedicated section

Command Line Interface (CLI):

— Pipeline type specific CLI commands: registered when pipeline type is registered (e.g.
route add, route delete, route list, etc for routing pipeline).

— Common pipeline CLI commands: ping (keep-alive), statistics, etc.

Library of reusable pipeline types



Ip_pipeline

[PIPELINEOQ]
type = MASTER
core=0

[PIPELINE1]

type = PASS-THROUGH

core=1

pktg_in = RXQ0.0 RXQ1.0 RXQ2.0 RXQ3.0
pktqg_out = SWQO0 SWQ1 SWQ2 SWQ3
dma_size =8

dma_dst_offset =0

dma_src_offset = 140; headroom (128) + 1st ethertype offset (12) = 140

dma_src_mask = 00000FFFOO0000FFF; ging
dma_hash_offset = 8; dma_dst_offset + dma_size = 8

[PIPELINE2]

type = FLOW_CLASSIFICATION

core=1

pktg_in = SWQ0 SWQ1 SWQ2 SWQ3
pktq_out = SWQ4 SWQ5 SWQ6 SWQ7
n_flows = 16777216; n_flows = 65536
key_size = 8; dma_size = 8

key_offset = 0; dma_dst_offset =0
hash_offset = 8; dma_hash_offset = 8
flow_id_offset = 64
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[PIPELINE3]

type = ROUTING

core=2

pktg_in = SWQ4 SWQ5 SWQ6 SWQ7

pktg_out = TXQ0.0 TXQ1.0 TXQ2.0 TXQ3.0

n_routes = 4096

12 = mpls

mpls_color_mark = yes

ip_hdr_offset = 150; headroom (128) + ethernet header (14) + ginqg (8) = 150
color_offset = 68
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Pipeline type:

— Functional block: flow classification, routing, etc
— Back-end (packets) + front-end (run-time config)
— Can be instantiated several times in the same app

Pipeline instance:

— Each instance configured independently

— Each instance has its own set of packet Qs (back-end) and message Qs (front-end)
— Each instance mapped to a single CPU core

CPU core:

— Each CPU core can run one or several pipeline instances (of same or different type)
— Pipeline instances mapped to same CPU core are essentially time-sharing threads

— Each pipeline instance can be dynamically remapped from one CPU core to another



