

1. Motivation
2. DPDK Packet Framework Libraries: librte_port, librte_table, librte_pipeline
3. Application Generator: ip_pipeline

DPD

DATA PLANE DEVELOPMENT

Userspace 2015

Rapid Development

DPDK Packe'F Framewgrk quickly turns D oom out: CPU
requirements into code level Py Core

- »
- »

Edge Router Application

CPU Core
CPU Core

Down

d Pipeline
Access Network / Core Network el

(Subscribers) { Edge Router (Provider)

Up \'\
Pipeline Pipeline

Functional Pipeline
Downstream Zoom in:
CPU core
level

Pipeline
CPU Core CPU Core

Port Out 0

:lnl
Upstream
Port Out 1
Packet Flow Packet Portin0 | Flow #
RX Classify: TX
—

PortIn1l

=i

Table 1

Port Out 2

-

DPDK Packet Framewe

Zoom in: Pipeline level Zoom out: Multi-core application level

Pipeline

Userspace 2015

Port Out 0 CPU Core

Table 0

Table 1

) Port Out 1
e

Portin0

~lI

Portin1 Port Out 2 Pipeline Pipeline

=l -
ports | Actions

HW queue Exact Match / Hash Reserved actions: Send to port, Packet I/O
Send to table, Drop

Pipeline

>
.h- CPU Core CPU Core

SW queue Access Control List (ACL) Flow Classification
IP Fragmentation Longest Prefix Match (LPM) EZ:I;(itr:dltS: push/pop/modify Firewall
IP Reassembl Arra Routin
v ¥ Flow-based: meter, stats, app ID =
Traffic Manager Pattern Matching Metering
Accelerators: crypto, compress
Kernel Network I/F (KNI) Traffic Mgmt

Load Balancing
Source/Sink

9: DATA PLANE DEVELOPMENT RIT

Userspace 2015

CPU Core Level(PIPE

Table 0 Port Out 0

~il
Table 1
A

i i
Portin1 . Port Out 2

Rapid pipeline development out of ports, tables and actions based on

A 4

A 4

A 4

Open Flow inspired methodology

, s)IDPDK
CPU Level (Appllcatl | Userspace 2015

SEedls CPU Core

Pipeline ST

CPU Core CPU Core

Pipeline Pipeline

- - . /@) g"“‘
Ip plpellne Userspace 2015

Configuration file:

— Defines the application structure by gluing together all pipeline instances. By using
different configuration files, different applications are generated

— All the application resources are created and configured through it

— Syntax is “define by reference”: first time a resource name is detected, it is registered
with default parameters, which can be refined through dedicated section

Command Line Interface (CLI):

— Pipeline type specific CLI commands: registered when pipeline type is registered (e.g.
route add, route delete, route list, etc for routing pipeline).

— Common pipeline CLI commands: ping (keep-alive), statistics, etc.

Library of reusable pipeline types

Ip_pipeline

[PIPELINEOQ]
type = MASTER
core=0

[PIPELINE1]

type = PASS-THROUGH

core=1

pktg_in = RXQ0.0 RXQ1.0 RXQ2.0 RXQ3.0
pktqg_out = SWQO0 SWQ1 SWQ2 SWQ3
dma_size =8

dma_dst_offset =0

dma_src_offset = 140; headroom (128) + 1st ethertype offset (12) = 140

dma_src_mask = 00000FFFOO0000FFF; ging
dma_hash_offset = 8; dma_dst_offset + dma_size = 8

[PIPELINE2]

type = FLOW_CLASSIFICATION

core=1

pktg_in = SWQ0 SWQ1 SWQ2 SWQ3
pktq_out = SWQ4 SWQ5 SWQ6 SWQ7
n_flows = 16777216; n_flows = 65536
key_size = 8; dma_size = 8

key_offset = 0; dma_dst_offset =0
hash_offset = 8; dma_hash_offset = 8
flow_id_offset = 64

DATA PLANE DEVEL

Userspace 20% 5

([T
HBY Routing

Pass- - Flow
through Classif
(]

[PIPELINE3]

type = ROUTING

core=2

pktg_in = SWQ4 SWQ5 SWQ6 SWQ7

pktg_out = TXQ0.0 TXQ1.0 TXQ2.0 TXQ3.0

n_routes = 4096

12 = mpls

mpls_color_mark = yes

ip_hdr_offset = 150; headroom (128) + ethernet header (14) + ginqg (8) = 150
color_offset = 68

DATA PLANE DEVELOPME

Userspace 2015

Ip_pipeline

Classif

Routing

' Flow '

' Classif '

Routing

Routing

Flow

Classif Flow

Classif

Routing

Flow

Classif Routing

» Routing

Flow

Classif o
Legend: Pipeline CPU
EENE: instance Core

DEVELOPMENT KIT

Ip plpellne | - Use;;;;cezo15

Pipeline type:

— Functional block: flow classification, routing, etc
— Back-end (packets) + front-end (run-time config)
— Can be instantiated several times in the same app

Pipeline instance:

— Each instance configured independently

— Each instance has its own set of packet Qs (back-end) and message Qs (front-end)
— Each instance mapped to a single CPU core

CPU core:

— Each CPU core can run one or several pipeline instances (of same or different type)
— Pipeline instances mapped to same CPU core are essentially time-sharing threads

— Each pipeline instance can be dynamically remapped from one CPU core to another

