DPDK

Userspace 2015 | Dublin =

DPDK Integrationasas




.
Userspace 201 !l

* Introduction & Background

* Implementation:
e Experimenting with DPDK
* Observations and Lessons Learned
* Moving Forward

* Q&A



Introduction & Backgrd ‘




Large shared code base with a
common architecture

Runs on a wide variety of
environments:

Cisco custom ASICS
Commercial multicore processors

Commercial multicore processors
within a hypervisor

Performance spectrum ranges
from 50 Mbits/sec to 200 Gbits/sec

Userspace 20

Legacy and modern tool chains:
Open source GCC, Custom GCC,
Intel ICC, CLANG

Legacy kernel 2.6.3x and forward
32bit and 64bit applications
Scales from 1 to 1000s of cores

Resides deep in a layered system



Experimenting with'D o




O . »
DATA

PLANE

Userspace 201

We're intrigued by DPDKs potential benefits:

* Performance in general
* Reduced system calls

* Simplified I/O batching
e Zero ISR core utilization
* Driver debugging

* Memory isolation
e Less risk of kernel crash



DPDK Integration

Phase 1: Data Plane only Integration
Integrate DPDK into our DP:

/O

Memory and buffer management
Thread management where required
by DPDK

Fedora build and runtime environment:

We built DPDK libs the normal way
We built our DP using host tools and
libraries

We linked our DP to DPDK dynamic
libs

9: DA NE DEVELOPMENT KI

Userspace 2015

Phase 2: Full Integration

* Integrate DPDK into our build
environment

* Integrate DPDK into our runtime
environment

* Enable management of DPDK
interfaces into our control plane



Implementation Observat




Implementation"OBSeme

Adapting multi-threaded
applications with more
threads than physical cores
can be difficult

Multi-socket VM
initialization failures on
legacy kernels

Our application is multi-threaded and
must scale down to a single core, but
early versions of DPDK enforced a 1:1
mapping between Icores and physical
cores.

Configuring multiple virtual sockets in a
VM, particularly with legacy kernels,
could result in NUMA panic.

7, DPD

DATA PLANE DEVELOI

Userspace 2015

From DPDK 2.0 forward, multi-lcore/
physical core is supported.

Issue addressed in DPDK 2.0 and forward
by removing the fall back to the
physical_device_id.



Implementation"OBs

7, DPD

DATA PLANE DEVELOI

Userspace 2015

Solution/Workaround

| limin h The ability of a legacy application to
Jioe ates the adopt DPDK may be hindered by the lack

traditional *nix methods of  of /dev/<network device> which

ma naging devices precludes the use of ethtool, ifconfig and
similar utilities or programmatic access to

related ioctls.

Poll mode 100% core It may not be acceptable to consume a
.. . . core when there is no work.
utilization with idle

interfaces

Alternatives considered:
* KNI

* Bifurcated driver

* Ethtool/netdevice APIs

Ultimately we chose to pursue Ethtool/
Netdevice APIs.

There is no easy way to solve this
problem, but we are hopeful that Rx
interrupt support will provide relief.



Userspace 201

Solution/Workaround

Per-lcore pktmbuf cache Experimented with various models, and Adapt application.

L. observed Icore cache can be APIs to monitor and manipulate local
appears to be optimized for underutilized or can become an pktmbuf  cache.
rx & tx on the same lcore parking lot. This can occur if rx and tx are

on different Icores, if an imbalance exists
between rx and tx or an Icore
infrequently does rx/tx.

lcore y

First

Icore x

First



Userspace 201

Solution/Workaround

AItering size of pktmbuf Tested different pktmbuf pool sizes Design to maximize effectiveness of local
under various models. Under some pktmbuf cache.

pool affects performance conditions, pktmbuf pool increase Could the pktmbuf pool algorithm be
resulted in reduced performance. We altered to improve performance?

speculate that the global pool algorithm
is FIFO-like and a large pool has negative
cache consequences.

v

ﬁ

lcore 'y
First
[ ?
First
iii
€

Icore x

First




DATA PLANE DEVELOI

Userspace 2015

Implementation"OoSeme

We began our testing with IXGBE. Aswe  Be aware that not all PMDs implement all

PMDs do not implement all

expanded to other NIC/PMDs, we APlIs.
APIs encountered some crashes related to Consider alternative approaches to FV

unimplemented APls. Most but not all validation.

FVs are validated.
Type DPDK API PMD FV Safe ixgbe ixgbevf vmxnet3 virtio igb igbvf
eth_dev_ops rte_eth_dev_tx_queue_stop tx_queue_stop 14 v 3 2 3 t 3 ® E 3
eth_dev_ops rte_eth_rx_queue_seutp rx_queue_setup (4 v v v %4 (4 4
eth_dev_ops rte_eth_dev_rx_queue_config rx_queue_release (4 (4 v v (4 v v
eth_dev_ops rte_eth_rx_queue_count rx_queue_count ® (4 ® 3 ® v x
eth_dev_ops 'NO API tx_queue_count 4 v | % % | % E LS
eth_dev_ops rte_eth_rx_descriptor_done rx_descriptor_done ® 4 8 ® 8 v
eth_dev_ops rte_eth_tx_queue_setup tx_queue_setup (4 (4 v v (4 v v
eth_dev_ops rte_eth_dev_tx_queue_config tx_queue_release v (4 v %4 (4 v %4
eth_dev_ops rte_eth_led_on dev_led_on 4 v 3 R 3 ® v 3
eth_dev_ops rte_eth_led_off dev_led_off (4 4 8 ® 8 v |
eth_dev_ops rte_eth_dev_flow_ctrl_get flow_ctrl_get (%4 v ® % ® v ®
eth_dev_ops rte_eth_dev_flow_ctrl_set flow_ctrl_set (4 (4 ® 3 ® (4 ®
eth_dev_ops rte_eth_dev_priority_flow_ctrl_set priority_flow_ctrl_set (%4 v x »® ® x »®
eth_dev_ops rte_eth_dev_mac_addr_remove mac_addr_remove 14 v 4 ® 4 v |
eth dev ops rte_ eth dev _mac addr add mac_addr add (4 4 4 P4 4 v &




Implementation"OBSE

PMDs are at varying levels
of maturity.

Limited visibility into PMD
Capabilities

Limited visibility into PMD
Mode

PMDs for Intel NICs seem to be most
mature.

PMDs are not as mature as kernel
drivers.

Not all PMDs support all features/
functions. Some capabilities can be
determined at run time from
rte_eth_dev_info_get(), some cannot.
For example, jumbo is not supported in
vmxnet3 today.

Some PMDs support multiple modes of
operation. For example IXGBE supports a
vector mode. The decision to use vector
mode is made within the PMD but there
is no way to programmatically query
whether this mode is enabled.

\‘-.

DATA PLANE DEVELOPMENT

3

Userspace 2015

Community awareness

Disable feature/function based on PMD
driver name.

Enumerate and implement methods of
querying capabilities.

The mode may be printed out, but access
to logs may not be an option in a deeply
embedded system.

Add APIs to query mode.



Implementation"ObSe |

DPDK may exit(), abort() or
panic().

Not all errors are reported
to the application

There is no mechanism for
an application to provide a
logging facility

Under some error conditions, DPDK may
exit, abort, panic. For example, if there is
no memory available on a socket to
allocate a memzone for ethernet data,
DPDK aborts. It is important to note that
the application may still function even
though DPDK cannot.

When testing IXGBEVF we discovered
that it silently dropped PF NACKs when
requesting an MTU change.

In a deeply embedded application, there
may be no mechanism for exposing the
output printf to users/administrators.

@ ) I .
DATA PLANE DEVELOPMENT KIT*

Userspace 2015

Allow application to set failure policy.
Consider prohibiting exit/abort/panic
within DPDK. Return errors and allow
application to determine appropriate
action.

Ensure APIs return appropriate indication
of success/failure.

Ensure that errors are reported up to
application level.

Use RTE_LOG instead of printf (and
friend)s. Applications could then
override RTE_LOG.

Consider provided a mechanism for the
application to bind a logging facility and
use RTE_LOG or similar for all logging.



Implementation"OBSE

32bit applications are a
challenge

Configuring DPDK within a
VM can be a challenge

Dynamic linking assumed

Supporting legacy kernels,
tools and libraries can be
challenging

Examples:

* 64bit KNI kernel module does not
support 32bit compatibility IOCTLs

* Initial IXGBE vector mode did not
support 32bit user space.

Examples:

* VMs have little visibility into NUMA.

* DPDK NUMA logic falling back to
physical_device_id

* Memory channel configuration is
unknown.

Ethernet driver registration is in the
library constructor.

Legacy kernels and tools may not support
all of the features and functionality
expected by DPDK.

9 » ~
DATA PLANE DEVELOPMENT Ki

Userspace 2015

Extensive testing and verification.
Community awareness that there are
32bit applications.

IXGBE 32bit vector mode support was
added in DPDK 2.0.

NUMA fallback resolved in DPDK 2.0.
There is currently no way to determine
programmatically memory channel
layout from within a VM.

Wrap DPDK static libs between —whole-
archive and --no-whole-archive

Extensive testing and verification by
those who require legacy support.
Community awareness that there are
applications which must support legacy
models.



Implementation Moving™ or




O’ .l-m
w Userspace 201

* To date our focus has been integrating DPDK into our application.
* We have worked closely with Intel to resolve the issues and upstream to
dpdk.org.

* Going forward our intent is to contribute directly to DPDK through bug fixes
and enhancements.






