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The Growth Trend of Business Data
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The volume of business data worldwide  
is expected to double every 2 years

Source: Oracle



The Growth Trend of Network Speed
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Source: IEEE 802.3 
Higher Speed Study 

Group - Tutorial



Linux, 

FreeBSD,


…

Solutions for Next Generation Networked Systems
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Solutions for Next Generation Networked Systems

• Demonstration of Two Networked Systems 

• Mega-KV

• A key-value store system with the highest throughput

• 100x higher throughput than Memcached 

• Snort with DPDK

• Enhance the efficiency of network I/O of Snort with DPDK

• A cooperation between USTC and Intel for educational 

purpose

• To be a course lab for Advanced Computer Networks
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Mega-KV: A Case for GPUs to Maximize the 
Throughput of In-Memory Key-Value Stores
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Key-Value Stores
๏ A simple but effective method to manage data where a data record 

(or a value) is stored and retrieved with its associated key 

• variable type and length of record (value)

• simple or no schema

• easy software development for many applications 

๏ Key-value stores have been widely deployed in data processing 
production systems:
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Simple and Easy Interfaces of Key-Value Stores

• set (key, value)

• value = get (key)

Index

38john_age

…

Variable-length 

keys & values 

Client

key

key-value store

GET Key: john_age Value: 38
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Key-Value Stores: Examples

Keys Values

Amazon Customer ID Customer profile (e.g., 
credit card, buying history)

Facebook, Twiter User ID User profile (e.g., friends, 
photos, posts)

iCloud/iTunes Movie/song name Movie, Song

Distributed 

file Systems Block ID Block



Workflow of a Typical In-Memory Key-Value Store

Network Processing

Memory Management

Index Operations

Access Value
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Workflow of a Typical In-Memory Key-Value Store

GET

TCP/IP Processing

Query Parsing
Network Processing

Memory
Full

Memory
Not Full

Evict Allocate Memory Management

Delete from 
Index

Insert into 
Index

Search in 
Index Index Operations

Read & Send Value Access Value
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Where does time go in KV-Store MICA [NSDI’14]
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Access Value

Index Operations

Network Processing 
(w/ DPDK) & Memory 

Management 

Index operation becomes one of the major bottlenecks
12



Random Memory Accesses in In-Memory Key-Value Stores

Query
Network Processing & 
Memory Management 

Access Value

Random  
Memory Accesses

Index Operation 

Hash Table
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Random Memory Accesses of Indexing are Expensive
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Inabilities for CPUs to Accelerate Random Memory 
Accesses

2. Prefetch

1. Cache

3.  Multithreading

• Not easy to predict next memory address

• Working set is large (~100 GB), CPU cache is small (~10 MB)

• Limited number of hardware threads

• Limited number of Miss Status Holding Registers (MSHRs)
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CPU spends a large portion of its time idling, waiting for data



Mega-KV addresses two issues:  
large number of queries and random memory access delay

Network Processing

Memory Management

Access Value

Index Operation To accelerate it by GPUs

DPDK, Multiget, UDP

Bitmap, Optimistic concurrent access

Prefetch
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The Goal of Mega-KV

๏ Throughput is the critical issue in big data environment

• Throughput measures the capability of a key-value store 

system to process a growing amount of queries on an 
increasingly large data set 

๏ Acceptable in-memory key-value store latency

•   < 1 millisecond, e.g. Facebook, Amazon, … 

๏ Our goal: Maximize throughput subject to an acceptable 
latency
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CPU vs. GPU

Intel Xeon E5-2650v2:

2.3 billion Transistors


8 Cores

59.7 GB/s memory bandwidth

Nvidia GTX 780:

7 billion Transistors


2,304 Cores (12 SMXs)

288.4 GB/s memory bandwidth

Massive ALUs

Control
Cache
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Two Advantages of GPUs for Key-Value Stores

GPU Core

…

…

…

cache 
miss

cache 
miss

Thread A

Thread B

Thread C

Instruction Buffer memory request issued,  
switch to another thread
memory request issued,  
switch to another thread
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1. Massive Processing Units to Address Large Number of 
Concurrent Queries  

• KV Store — simple independent memory access operations

• GPU — thousands of cores for parallel processing

2. Massively Hiding Memory Access Latency 
• KV Store — random memory accesses in index operations

• GPUs can effectively hide memory access latency with massive hardware 

threads and zero-overhead thread scheduling (a GPU hardware support)



Basic Design of Mega-KV

Pre-
Processing

GPU 
Processing

Post-
Processing

Index OperationsNetwork processing,

Memory management Read & Send Value

20

RX
DPDK

TX
DPDK



Basic Design

Pre-
Processing

Network processing,

Memory management
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Basic Design

Pre-
Processing

Network processing,

Memory management

Batch
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Basic Design

Pre-
Processing

Network processing,

Memory management

Parallel Processing 
 in GPUs
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Basic Design

Pre-
Processing

Network processing,

Memory management

Parallel Processing 
 in GPUs
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Post-
Processing

Basic Design

Pre-
Processing

Network processing,

Memory management

Parallel Processing 
 in GPUs

Read & Send Value
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Post-
Processing

Basic Design

Pre-
Processing

Network processing,

Memory management

Parallel Processing 
 in GPUs

Read & Send Value
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Challenges of Offloading Index Operations to GPUs

1. GPUs’ memory capacity is small: ~10 GB

• Working set may be hundreds of gigabytes 

2. Low PCIe bandwidth

• PCIe is generally the bottleneck of GPUs if large bulk of data 

needs to be transferred 

3. Handling variable-length data is inefficient for GPUs

• Imbalance load between GPU cores
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Our Approach

C C C C

Input data (Keys) Index

key

GPU optimized cuckoo hash table that

stores key signatures and value locations 

C C C C

Compress

Compressed fixed-length signatures 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Address challenges 2, 3  
(PCIe bandwidth and variable length data)

Address challenges 1, 3

(GPU memory capacity and variable length data)



GPU Cuckoo Hash Table

Key

Signature
compress

Our Approach: Search Index
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key comparison

Send to client

ValueKey
KV object



Evaluation - Hardware Setup

CPU:

Intel Xeon E5-2650v2 octa-core, 2.6GHz 


Total 16 CPU cores


GPU:

Nvidia GTX 780, 2304 cores, 863MHz 


Total 4608 cores


NIC:

Intel dual-port 10Gbps NIC


Total 40 Gbps
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Reaching a Record High Throughput
Th

ro
ug

hp
ut

 (M
O

PS
)

0
20
40
60
80

100
120
140
160
180

Data Sets

8B key 
8B value

16B key 
64B value

32B key 
512B value

128B key 
1024B value

Fastest CPU-based KV store Mega-KV

2.1x
1.9x

2.8x
2.1x

31



Latency
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Compared with

Facebook

1,200 (95th)

300 (50th)



Accelerating the Network I/O of Snort with DPDK
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Snort

• Snort is a multi-mode packet analysis tool

• Sniffer

• Packet Logger

• Forensic Data Analysis tool

• Network Intrusion Detection System 

• Snort is able to perform network traffic analysis both in real-time 
and for forensic post processing 

• Snort “Metrics” 

• Fast (High probability of detection for an attack on high speed networks)

• Configurable (Easy rules language, many reporting/logging options)
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Snort Architecture
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Packet I/O

Packet Decoder

Preprocessor

Detection Engine

Output



Incapability in Handling 10Gbps Network Traffic

36

Cycles 
Needed 
in Snort

1,200 400 - 25,000…+

Packet I/O Detection, etc.

Your 
Budget

1,400

10Gbps, min-sized packets, quad-core 2.66GHz CPUs

(in x86, cycle numbers are from RouteBricks [Dobrescu09] and PacketShader[Han10])



Incapability of Snort for High Speed Networks

• Snort was designed to detect attacks on 100Mbps links

• Current network speed  reaches 10Gbps and 40Gbps

• Snort becomes incapable of detecting intrusions on current backbone 

and data center network


• Accelerate network I/O with DPDK

• Snort 2.9 introduces the Data Acquisition library (DAQ) for packet I/O

• Current supported: pcap, AF_PACKET, netmap, ipfw

• Our work: add DPDK support in DAQ
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Opportunities from DPDK
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Cycles 
Needed 1,200 400 - 25,000…+

Packet I/O Detection, etc.

80

DPDK



EXPERIMENTAL SETUP

• Hardware

• CPU: Intel(R) Xeon(R) CPU E5-2650 v3 

• NIC: 82599ES 10-Gigabit SFI/SFP+ Network Cards 


• Software 

• Linux 3.19.0 

• Snort 2.9.8.0 

• DPDK 2.1.0
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Snort Modes

• Two Snort modes: Passive Mode and Inline Mode

• Snort is bypassed in the Passive Mode

• Snort filters packets in the Inline Mode

40

Snort

Passive 
Mode

SnortInline 
Mode



Snort Throughput (Inline Mode w/o DPI)
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Throughput Stability of DPDK and Netmap
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Latency (Inline Mode w/o DPI)
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Latency Stability of DPDK and Netmap
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Snort Throughput (Passive Mode w/ DPI)
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Summary

๏ Mega-KV provides the highest throughput

• Fastest in-memory key-value store on commodity processors

• More than 100x faster than Memcached

• Open source at http://kay21s.github.io/megakv/


๏ Integrating DPDK into Snort

• Improving the latency and throughput of Snort

• For educational purpose: To be a course assignment in USTC
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Thanks!
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