
Building High-Performance Networked Systems
with Innovative Hardware and Software Techniques

Kai Zhang
University of Science and Technology of China

The Growth Trend of Business Data

2

The volume of business data worldwide  
is expected to double every 2 years

Source: Oracle

The Growth Trend of Network Speed

3

Source: IEEE 802.3
Higher Speed Study

Group - Tutorial

Linux,

FreeBSD,

…

Solutions for Next Generation Networked Systems

4

NETWORKED
SYSTEM

OPERATING
SYSTEM

HARDWARE

Networked Intrusion

Detection System

Firewall

IPSec Gateway

Load Balancer
Router

Key-Value Store

… …

TCP/IP Stack

NIC Driver

Socket

CPUs

DPDK, Netmap, …
New drivers, bypass the OS

How to utilize?

GPUs CPUs with
Integrated GPUs Xeon Phi

Solutions for Next Generation Networked Systems

• Demonstration of Two Networked Systems 

• Mega-KV

• A key-value store system with the highest throughput

• 100x higher throughput than Memcached 

• Snort with DPDK

• Enhance the efficiency of network I/O of Snort with DPDK

• A cooperation between USTC and Intel for educational

purpose

• To be a course lab for Advanced Computer Networks

5

Mega-KV: A Case for GPUs to Maximize the
Throughput of In-Memory Key-Value Stores

6

Key-Value Stores
๏ A simple but effective method to manage data where a data record

(or a value) is stored and retrieved with its associated key

• variable type and length of record (value)

• simple or no schema

• easy software development for many applications 

๏ Key-value stores have been widely deployed in data processing
production systems:

7

Simple and Easy Interfaces of Key-Value Stores

• set (key, value)

• value = get (key)

Index

38john_age

…

Variable-length

keys & values

Client

key

key-value store

GET Key: john_age Value: 38

8

Key-Value Stores: Examples

Keys Values

Amazon Customer ID Customer profile (e.g.,
credit card, buying history)

Facebook, Twiter User ID User profile (e.g., friends,
photos, posts)

iCloud/iTunes Movie/song name Movie, Song

Distributed

file Systems Block ID Block

Workflow of a Typical In-Memory Key-Value Store

Network Processing

Memory Management

Index Operations

Access Value

10

Workflow of a Typical In-Memory Key-Value Store

GET

TCP/IP Processing

Query Parsing
Network Processing

Memory
Full

Memory
Not Full

Evict Allocate Memory Management

Delete from
Index

Insert into
Index

Search in
Index Index Operations

Read & Send Value Access Value

11

SETDELETE

Where does time go in KV-Store MICA [NSDI’14]

Ex
ec

ut
io

n
Ti

m
e

Pe
rc

en
ta

ge

0

0.25

0.5

0.75

1

Four Data Sets

1) 128B Key  
1024B Value

2) 32B Key  
512B Value

3) 16B Key  
64B Value

4) 8B Key  
8B Value

Access Value

Index Operations

Network Processing
(w/ DPDK) & Memory

Management

Index operation becomes one of the major bottlenecks
12

Random Memory Accesses in In-Memory Key-Value Stores

Query
Network Processing &
Memory Management

Access Value

Random
Memory Accesses

Index Operation

Hash Table

13

Random Memory Accesses of Indexing are Expensive
Ti

m
e

(n
an

os
ec

on
d)

0

60

120

180

240

Number of Memory Accesses
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sequential memory access
Random memory access

72

163

CPU: Intel Xeon E5-2650v2

Memory: 1600 MHz DDR3

14

Inabilities for CPUs to Accelerate Random Memory
Accesses

2. Prefetch

1. Cache

3. Multithreading

• Not easy to predict next memory address

• Working set is large (~100 GB), CPU cache is small (~10 MB)

• Limited number of hardware threads

• Limited number of Miss Status Holding Registers (MSHRs)

15

CPU spends a large portion of its time idling, waiting for data

Mega-KV addresses two issues:
large number of queries and random memory access delay

Network Processing

Memory Management

Access Value

Index Operation To accelerate it by GPUs

DPDK, Multiget, UDP

Bitmap, Optimistic concurrent access

Prefetch

16

The Goal of Mega-KV

๏ Throughput is the critical issue in big data environment

• Throughput measures the capability of a key-value store

system to process a growing amount of queries on an
increasingly large data set 

๏ Acceptable in-memory key-value store latency

• < 1 millisecond, e.g. Facebook, Amazon, … 

๏ Our goal: Maximize throughput subject to an acceptable
latency

17

CPU vs. GPU

Intel Xeon E5-2650v2:

2.3 billion Transistors

8 Cores

59.7 GB/s memory bandwidth

Nvidia GTX 780:

7 billion Transistors

2,304 Cores (12 SMXs)

288.4 GB/s memory bandwidth

Massive ALUs

Control
Cache

18

Two Advantages of GPUs for Key-Value Stores

GPU Core

…

…

…

cache
miss

cache
miss

Thread A

Thread B

Thread C

Instruction Buffer memory request issued,
switch to another thread
memory request issued,
switch to another thread

19

1. Massive Processing Units to Address Large Number of
Concurrent Queries

• KV Store — simple independent memory access operations

• GPU — thousands of cores for parallel processing

2. Massively Hiding Memory Access Latency
• KV Store — random memory accesses in index operations

• GPUs can effectively hide memory access latency with massive hardware

threads and zero-overhead thread scheduling (a GPU hardware support)

Basic Design of Mega-KV

Pre-
Processing

GPU
Processing

Post-
Processing

Index OperationsNetwork processing,

Memory management Read & Send Value

20

RX
DPDK

TX
DPDK

Basic Design

Pre-
Processing

Network processing,

Memory management

21

Basic Design

Pre-
Processing

Network processing,

Memory management

Batch

22

Basic Design

Pre-
Processing

Network processing,

Memory management

Parallel Processing
 in GPUs

23

Basic Design

Pre-
Processing

Network processing,

Memory management

Parallel Processing
 in GPUs

24

Post-
Processing

Basic Design

Pre-
Processing

Network processing,

Memory management

Parallel Processing
 in GPUs

Read & Send Value

25

Post-
Processing

Basic Design

Pre-
Processing

Network processing,

Memory management

Parallel Processing
 in GPUs

Read & Send Value

26

Challenges of Offloading Index Operations to GPUs

1. GPUs’ memory capacity is small: ~10 GB

• Working set may be hundreds of gigabytes 

2. Low PCIe bandwidth

• PCIe is generally the bottleneck of GPUs if large bulk of data

needs to be transferred 

3. Handling variable-length data is inefficient for GPUs

• Imbalance load between GPU cores

27

Our Approach

C C C C

Input data (Keys) Index

key

GPU optimized cuckoo hash table that

stores key signatures and value locations 

C C C C

Compress

Compressed fixed-length signatures 

28

Address challenges 2, 3  
(PCIe bandwidth and variable length data)

Address challenges 1, 3

(GPU memory capacity and variable length data)

GPU Cuckoo Hash Table

Key

Signature
compress

Our Approach: Search Index

29

key comparison

Send to client

ValueKey
KV object

Evaluation - Hardware Setup

CPU:

Intel Xeon E5-2650v2 octa-core, 2.6GHz

Total 16 CPU cores

GPU:

Nvidia GTX 780, 2304 cores, 863MHz

Total 4608 cores

NIC:

Intel dual-port 10Gbps NIC

Total 40 Gbps

30

Reaching a Record High Throughput
Th

ro
ug

hp
ut

 (M
O

PS
)

0
20
40
60
80

100
120
140
160
180

Data Sets

8B key 
8B value

16B key 
64B value

32B key 
512B value

128B key 
1024B value

Fastest CPU-based KV store Mega-KV

2.1x
1.9x

2.8x
2.1x

31

Latency
C

DF

0

0.25

0.5

0.75

1

Round Trip Time (microsecond)

0 60 120 180 240 300 360 420 480 540 600

160 MOPS

95th: 390

50th: 256

32

Compared with

Facebook

1,200 (95th)

300 (50th)

Accelerating the Network I/O of Snort with DPDK

33

Snort

• Snort is a multi-mode packet analysis tool

• Sniffer

• Packet Logger

• Forensic Data Analysis tool

• Network Intrusion Detection System 

• Snort is able to perform network traffic analysis both in real-time
and for forensic post processing 

• Snort “Metrics”

• Fast (High probability of detection for an attack on high speed networks)

• Configurable (Easy rules language, many reporting/logging options)

34

Snort Architecture

35

Packet I/O

Packet Decoder

Preprocessor

Detection Engine

Output

Incapability in Handling 10Gbps Network Traffic

36

Cycles
Needed
in Snort

1,200 400 - 25,000…+

Packet I/O Detection, etc.

Your
Budget

1,400

10Gbps, min-sized packets, quad-core 2.66GHz CPUs

(in x86, cycle numbers are from RouteBricks [Dobrescu09] and PacketShader[Han10])

Incapability of Snort for High Speed Networks

• Snort was designed to detect attacks on 100Mbps links

• Current network speed reaches 10Gbps and 40Gbps

• Snort becomes incapable of detecting intrusions on current backbone

and data center network

• Accelerate network I/O with DPDK

• Snort 2.9 introduces the Data Acquisition library (DAQ) for packet I/O

• Current supported: pcap, AF_PACKET, netmap, ipfw

• Our work: add DPDK support in DAQ

37

Opportunities from DPDK

38

Cycles
Needed 1,200 400 - 25,000…+

Packet I/O Detection, etc.

80

DPDK

EXPERIMENTAL SETUP

• Hardware

• CPU: Intel(R) Xeon(R) CPU E5-2650 v3

• NIC: 82599ES 10-Gigabit SFI/SFP+ Network Cards

• Software

• Linux 3.19.0

• Snort 2.9.8.0

• DPDK 2.1.0

39

Snort Modes

• Two Snort modes: Passive Mode and Inline Mode

• Snort is bypassed in the Passive Mode

• Snort filters packets in the Inline Mode

40

Snort

Passive 
Mode

SnortInline 
Mode

Snort Throughput (Inline Mode w/o DPI)

41

Throughput Stability of DPDK and Netmap

Th
ro

ug
hp

ut
 (M

pp
s)

13

14

15

1 2 3 4 5 6

14.86 14.88 14.86 14.88 14.86 14.88

14.25

13.90

13.49

14.20

13.72
13.90

netmap dpdk

Latency (Inline Mode w/o DPI)

42

Latency Stability of DPDK and Netmap

La
te

nc
y

(m
s)

0.0

0.1

0.2

0.3

1 2 3 4 5 6

0.15 0.16 0.15 0.15 0.15 0.14

0.26 0.25

0.34

0.25

0.34 0.33

netmap dpdk

Snort Throughput (Passive Mode w/ DPI)

43

DPDK

netmap

AF_PACKET

pcap

Throughput (Mpps)

0 1.25 2.5 3.75 5

1.36

1.56

4.24

4.28

Summary

๏ Mega-KV provides the highest throughput

• Fastest in-memory key-value store on commodity processors

• More than 100x faster than Memcached

• Open source at http://kay21s.github.io/megakv/

๏ Integrating DPDK into Snort

• Improving the latency and throughput of Snort

• For educational purpose: To be a course assignment in USTC

44

Thanks!

45

