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What’s actually going on?

Ring ops Ring ops



Overview of Memory System
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Overview of Memory System (cont’d)
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L1D 64 4 32
64 (Load)
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L2 64 11 256 64
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Haswell cache parameters

AVX to maximize bandwidth
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Let’s Do It!
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Target for our analysis
– Where the data flows



First Impression
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Unexpectedly…

First try

LLC -> L1

Cross-core copies?
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Notice
– CPU cycle measurement disturbs overall performance



Under The Hood
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Data locality in cache: Who operates the data



Guest Read The Packet
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Still Doesn’t Feel Right…

Guest read packet

No change?
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Under The Hood
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Cache line can be shared when no modification



Guest Edit The Packet
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Write-back

Guest edit packet

Cross-core copies

No change?
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Go See Some C Code
desc_addr = gpa_to_vva(dev, desc->addr);
rte_prefetch0((void *)(uintptr_t)desc_addr);

rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *, mbuf_offset),
(void *)((uintptr_t)(desc_addr + desc_offset)),
cpy_len);

Oh I see – S/W Prefetching to reduce latency



Without S/W Prefetching
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Now I understand
– Bring it back right away!



How About Guest In Another 
Node?
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Better NOT…

Guest edit packet; No prefetching

Keep related processes on the same node



rte_memcpy()? Why Even Bother?

Guest edit packet; Guest on the same node

Warm copy – DPDK’s scenario

AVX load/store

Alignment handling



AVX For Bandwidth

Guest read packet; Guest on the same node

xmm0 = _mm_loadu_si128(src);
_mm_storeu_si128(dst, xmm0);

ymm0 = _mm256_loadu_si256(src);
_mm256_storeu_si256(dst, ymm0);

AVX512 is coming

2x peak bandwidth

+ 40%
+ 53%



Alignment Matters

rte_memcpy(dst, src, len);rte_memcpy((void *)((uint8_t *)dst + 1),
src, len - 1);

Guest read packet; Guest on the same node

+ 17%
+ 15%Just like coupons

– FREE gifts if you use them



Takeaways
• See actual memory behaviors under the hood

– Intel® 64 and IA-32 Architectures Optimization 
Reference Manual

• Benefit from new IA technologies
– AVX, DDIO…
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Cache Allocation Technology

Noisy neighbor:
 One core is requesting huge amount of data
 What if another HIGH priority core is very latency sensitive?

CMT + CAT
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