
Topic: A Deep Dive 
into Memory Access

Company: Intel
Title: Software Engineer
Name: Wang, Zhihong



Host

A Typical NFV Scenario: PVP

Forwarding 
Engine

NIC

Guest

Forwarding 
Engine

virtio

vhost

Shared Memory

vhost
TX

vhost
RX

NIC 
TX

NIC
RX

virtio
RX

virtio
TX

DDIO

memcpy memcpy

DDIO

Host iofwd

Guest iofwd
virtio

RX
virtio

TX

What’s actually going on?

Ring ops Ring ops



Overview of Memory System

CPU 0 CPU 1

Memory 0 Memory 1

LLC LLC

Core 
0

Core 
1

Core 
N-1… Core 

N
Core 
N+1

Core 
2N-1…Core 

1

MESIF protocol



Overview of Memory System (cont’d)

CPU 0 CPU 1

Memory 0 Memory 1

LLC LLC

Core 
0

Core 
1

Core 
N-1… Core 

N
Core 
N+1

Core 
2N-1…

1

2

3

4
5

6

Load

Cache level

Line

size

(Bytes)

Fastest

latency

(Cycle)

Capacity

(KB)

Peak bandwidth

(Bytes/cycle)

L1D 64 4 32
64 (Load)
 + 32 (Store)

L2 64 11 256 64
LLC 64 ~34 Varies
L2 and L1D in
other cores

64

Haswell cache parameters

AVX to maximize bandwidth



Host

Forwarding 
Engine

NIC

Guest

Forwarding 
Engine

virtio

vhost

Let’s Do It!

Shared Memory

vhost
TX

vhost
RX

NIC 
TX

NIC
RX

virtio
RX

virtio
TX

DDIO

memcpy memcpy

DDIO

Host iofwd

Guest iofwd
virtio

RX
virtio

TX
Ring ops Ring ops

Target for our analysis
– Where the data flows



First Impression

CPU 0 CPU 1

Memory 0 Memory 1

LLC LLC

Host 
iofwd

Guest
iofwd

Core 
N-1… Core 

N+1
Core 
2N-1…

Host FWD VM FWD

RX from NIC
TX to vhost

RX from virtio
TX to virtio

RX from vhost
TX to NIC

Core 
N

Host -> Guest

Guest -> Host



Unexpectedly…

First try

LLC -> L1

Cross-core copies?

CPU 0

Memory 0

LLC

Host 
iofwd

Guest
iofwd

Core 
N-1… Host -> Guest

Guest -> Host

?

Notice
– CPU cycle measurement disturbs overall performance



Under The Hood

CPU 0 CPU 1

Memory 0 Memory 1

LLC LLC

Host 
iofwd

Guest
iofwd

Core 
N-1… Core 

N
Core 
N+1

Core 
2N-1…

Guest updates ring only, doesn’t touch the data

Host -> Guest

Guest -> Host

Data locality in cache: Who operates the data



Guest Read The Packet

CPU 0 CPU 1

Memory 0 Memory 1

LLC LLC

Host 
iofwd

Guest
iofwd

Core 
N-1… Core 

N
Core 
N+1

Core 
2N-1…R

Host FWD VM FWD

RX from NIC
TX to vhost

RX from virtio
Read packet
TX to virtio

RX from vhost
TX to NIC

Host -> Guest

Guest -> Host



Still Doesn’t Feel Right…

Guest read packet

No change?

CPU 0

Memory 0

LLC

Host 
iofwd

Guest
iofwd

Core 
N-1…R

Host -> Guest

Guest -> Host

?



Under The Hood

CPU 0 CPU 1

Memory 0 Memory 1

LLC LLC

Host 
iofwd

Guest
iofwd

Core 
N-1… Core 

N
Core 
N+1

Core 
2N-1…R

Host FWD VM FWD

RX from NIC
TX to vhost

RX from virtio
Read packet
TX to virtio

RX from vhost
TX to NIC

Host -> Guest

Guest -> Host

Cache line can be shared when no modification



Guest Edit The Packet

CPU 0 CPU 1

Memory 0 Memory 1

LLC LLC

Host 
iofwd

Guest
iofwd

Core 
N-1… Core 

N
Core 
N+1

Core 
2N-1…M

Host FWD VM FWD

RX from NIC
TX to vhost

RX from virtio
Edit packet
TX to virtio

RX from vhost
TX to NIC

Host -> Guest

Guest -> Host



Write-back

Guest edit packet

Cross-core copies

No change?
CPU 0

Memory 0

LLC

Host 
iofwd

Guest
iofwd

Core 
N-1…M

Host -> Guest

Guest -> Host



Go See Some C Code
desc_addr = gpa_to_vva(dev, desc->addr);
rte_prefetch0((void *)(uintptr_t)desc_addr);

rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *, mbuf_offset),
(void *)((uintptr_t)(desc_addr + desc_offset)),
cpy_len);

Oh I see – S/W Prefetching to reduce latency



Without S/W Prefetching

CPU 0

Memory 0

LLC

Host 
iofwd

Guest
iofwd

Core 
N-1…M

Host -> Guest

Guest -> Host

Guest edit packet; No prefetching

Now I understand
– Bring it back right away!



How About Guest In Another 
Node?

CPU 0 CPU 1

Memory 0 Memory 1

LLC LLC

Host 
iofwd

Core 
1

Core 
N-1… Guest

iofwd
Core 
N+1

Core 
2N-1…M

Host FWD VM FWD

RX from NIC
TX to vhost

RX from virtio
Edit packet
TX to virtio

RX from vhost
TX to NIC

Host -> Guest

Guest -> Host



Better NOT…

Guest edit packet; No prefetching

Keep related processes on the same node



rte_memcpy()? Why Even Bother?

Guest edit packet; Guest on the same node

Warm copy – DPDK’s scenario

AVX load/store

Alignment handling



AVX For Bandwidth

Guest read packet; Guest on the same node

xmm0 = _mm_loadu_si128(src);
_mm_storeu_si128(dst, xmm0);

ymm0 = _mm256_loadu_si256(src);
_mm256_storeu_si256(dst, ymm0);

AVX512 is coming

2x peak bandwidth

+ 40%
+ 53%



Alignment Matters

rte_memcpy(dst, src, len);rte_memcpy((void *)((uint8_t *)dst + 1),
src, len - 1);

Guest read packet; Guest on the same node

+ 17%
+ 15%Just like coupons

– FREE gifts if you use them



Takeaways
• See actual memory behaviors under the hood

– Intel® 64 and IA-32 Architectures Optimization 
Reference Manual

• Benefit from new IA technologies
– AVX, DDIO…





CPU 0 CPU 1

Memory 0 Memory 1

LLC LLC

Core 
0

Core 
1

Core 
N-1… Core 

N
Core 
N+1

Core 
2N-1…

Cache Allocation Technology

Noisy neighbor:
 One core is requesting huge amount of data
 What if another HIGH priority core is very latency sensitive?

CMT + CAT


	Slide Number 1
	A Typical NFV Scenario: PVP
	Overview of Memory System
	Overview of Memory System (cont’d)
	Let’s Do It!
	First Impression
	Unexpectedly…
	Under The Hood
	Guest Read The Packet
	Still Doesn’t Feel Right…
	Under The Hood
	Guest Edit The Packet
	Write-back
	Go See Some C Code
	Without S/W Prefetching
	How About Guest In Another Node?
	Better NOT…
	rte_memcpy()? Why Even Bother?
	AVX For Bandwidth
	Alignment Matters
	Takeaways
	Slide Number 22
	Cache Allocation Technology

