FD.io/VPP OVS DPDK

An Comparison of Fd.io and OVS/DPDK

Thomas F Herbert SDN Group Red Hat

Contents

• Introduction to Fd.io/VPP

- Fd.io Project and Community
- VPP Architecture and Performance
- Review of OVS/DPDK
 - OVS/DPDK Architecture and Performance
- Fd.io compared to OVS/DPDK
- Looking Forward
- Conclusion

Fd.io

Fd.io Introduction

• Community

- Open Source Project
- Linux Foundation
- Open Governance Model
- Active and Growing Community

• Licensing

• Apache 2.0

• History

- Internal of Cisco product: vRouter v9000 ACL products
- Code dump: Cisco January 2016

- Projects
 - VPP Core Engine
 - CSIT
 - NSH/SFC
 - ONE -- Overlays, LISP
 - Honeycomb
 - VPP Sandbox -- Bootstrapping hosting
 - More to Come

Fd.io

Full Layer 2 and Layer 3 Functionality

IP

Complete IPv4 and IPv6 Stacks GRE, vxLAN, IPSEC, DHCP Neighbor Discovery, Router Advertisement Segment Routing MAP/LW46 ARP Termination and Proxy ARP

MPLS

. . .

MPLS over Ethernet with Deep label stacks

Layer 2

. . .

Vlans -- single and double Mac Learning Flooding Input ACLs

Counters for Everything Input Checks TTL, Header Checksum ARP

VPP Architecture -- How VPP Works

Packet Vector is Input to DPDK

Nodes on Graph Pipeline Process Packets According to Registered Dependencies

Additional Plugins can be Introduced to Create New Nodes

Examples:

VxLAN - NSH VTEP

Fd.io (VPP) Architecture

VPP reads the largest available vector of packets from the network IO layer.

VPP then processes the vector of packets through a Packet Processing graph.

Fd.io (VPP) Architecture

Fd.io (VPP) Architecture

Open vSwitch Architecture

DPDK User Space Summit 2015 Dublin

Open vSwitch Architecture

Open vSwitch Acceleration

DPDK User Space Summit 2015 Dublin

Open vSwitch Acceleration

DPDK User Space Summit 2015 Dublin

Open vSwitch Acceleration

Challenge of Comparing Performance

- Perception that that VPP "Fixes" OVS/DPDK Scalability Problem.
- Need Real World Use Cases
 - Open Stack Deployments of Both to Compare
 - The hope is that OPNFV/Vsperf will compare
 - Fds vs ovs/dpdk
- As TOR VPP May Scale Better
 - But Deployed in Compute Node or Hosting NFVs?

Raw DPDK Performance

Open vSwitch Performance w/DPDK

DPDK Can Scale OVS performance significantly particularly when multiple cores are used.

Open vSwitch Performance

DPDK Can Accelerate OVS Well with Small Packet Sizes.

Open vSwitch Performance

Core Scaling for PHY-VM-PHY OvS with DPDK Throughput Performance with 40 Gbps on Intel® Xeon® processor E5-2695 v4

When passed through VM with vhost-user, DPDK/OVS may scale OK with simple forwarding with relatively small number of flows.

OVS and FD.IO Similarities

- DPDK based
- Implemented in Software on Commodity Processors
 - Intel, ARM, Power 8
- Deployable in Compute node of Open Stack
- Host to VM uses vhost-user
- Container Support is through kernel via TAP
 - Limitations of Kernel Networking
 - Will User Space Netlink Be Faster
 - Security Issues

Architecture: Apples vs Oranges

Open vSwitch

FD.IO/VPP

Open Flow Protocol matches and actions

Fast Path -- Linux Kernel Module

Fast Path -- Accelerated by DPDK

Fast Path Exact Match Cache -- Fastest

About 8K matches using linear search

Misses go to Slower MiniFlow Match -- Slower

Misses then go to OFP Match Slowest

VPP fd.io

Graph based vector Processing Engine

Consumes vector of input packets

Extensible via plugins

Synchronized for parallel operation

Multiple nodes

Optimized for parallelism

Hardware like -- Use branch prediction.

Open vSwitch

Control Plane

Two control plane protocols

- Open Flow Protocol
 - Matches and Actions
 - 44 Packet Match Fields Plus Metadata
 - CLI
 - ovs-ofctl
- OVSDB Protocol
 - Ports, Bridges, Tunnels, Config
 - Highly configurable
 - CLI
 - ovs-vsctl

VPP Control Plane

- Basic VPP has
 - CLI API
 - Restconf IF
- Extensible via plugins
 - Each Plugin has has
 - CLI API
 - Restconf IF
- Includes complete IPv4 and IPv6 stack
 - Other vRouter Features
 - CLI API
 - Restconf IF

Control Plane Differences - Open Stack

Performance: Apples vs Oranges

Open vSwitch

FD.IO/VPP

Specified by Open Flow as "Switch" 1.0 - 1.5 No one predicted NFV Cloud Use Case

4 to 5 years of experience

Works Well with Conceptualized Networks

1+ Years with NFV Experience

Observed Performance Scaling May not be as Good: Deteriorates with many Flows Designed as vRouter Configured by IOS/CLI

Super Configurable Statistics Everywhere

Historical Use in Real World TOR Switch -- Infrastructure Router

Now Utilized in Complex Multi-Use? Compute Node Host HyperVisor

Not originally designed as "SDN" as defined by Open Flow

VPP vs OVS Performance?

nfv-infrastructure-pt-1/d/d-id/718684?page number=8

- OVS may not scale well when the number of flows exceed 8192 due to size of EMC
- According to NEANTC testing, VPP scales close to linearly.
- Also, the VPP architecture may hold promise for accelerating vxLAN/NSH in the VTEP case for SFC.
- But...

Is testing on Number of MAC Addresses Sufficiently Realistic?

FD.io VPP OVS/DPDK Outlook

- VPP shows promise
 - Pipelined Approach
 - Well Suited for DPDK
- Dual Approach Possible
 - OVS in Control Plane
- FD.io: Alternative to OVS for some deployment scenarios

- Performance Validation
 - Real world scenarios: OpenStack
 - Via OPNFV FDS
 - Real World Use Cases
 - NFV
 - Open Stack OPNFV
 Deployments
- vxLAN NSH/SFC
 - Likely to be merged upstream sooner then OVS/DPDK

Open Stack Deployments

Open vSwitch

FD.IO/VPP

Upstream

vxLAN - NSH for Alternative to OVS HoneyComb Yang CSIT -- Continuous Testing Infrastructure

Performance Validation Container Performance

OPNFV and MidStream FDS - Fast Data Stacks Apex Installer "D" Release - Real World NFV Deployment Vsperf Security Groups Policy QoS

Upstream

vHost multi-queue -- perf performances Container Acceleration DPDK Development DPDK "Usability" Get rid of "Experimental" vxLAN NSH and VTEP Acceptance

OPNFV and MidStream Deploy OVS/DPDK C Release Apex and Fuel Installers vxLAN NSH and VTEP Vsperf OVS4NFV - QoS Perf Req

References and Credits

VPP fd.io

Open Source Project: fd.io

http://www.lightreading.com/carrier-sdn/sdn-technology/the-future-is-networks-on-demand-says-cisco-chiefarchitect/d/d-id/721694

https://fd.io/technology

fd.io performance

<u>http://www.lightreading.com/nfv/nfv-tests-and-trials/validating-ciscos-nfv-infrastructure-pt-1/d/d-id/718684?p</u> age_number=8

Open vSwitch/DPDK performance

https://download.01.org/packet-processing/ONPS2.1/Intel_ONP_Release_2.1_Performance_Test_Report_Rev1.0.pd

http://www.slideshare.net/harryvanhaaren/ovs-and-dpdk-tf-herbert-k-traynor-m-gray

