DEVICE TYPE AGNOSTIC DPDK: AN UPDATE

Hemant Agrawal, Shreyansh Jain
April-2017

‘K SECURE CONNECTIONS
Y FOR A SMARTER WORLD

EXTERNAL USE

NEXT ~12 MIN
« Overview of Bus-Device-Driver Model
- NXP Roadmap

NEXT ~10 MIN

- NXP Roadmap

Pre-16.11 Device<~Driver Model

- DPDK was an inherently PCI inclined model
- Core (EAL) libraries considered PCI objects as a first-class member

struct rte_eth_dev { struct rte_cryptodev { struct eth_driver {)
eth_rx_burst_t rx_pkt_burst; dequeue_pkt_burst_t dequeue_burst; struct rte_pci_driver pci_drv;
eth_tx_burst_t tx_pkt_burst; enqueue_pkt_burst_t enqueue_burst; -
struct rte_pci_device *pci_dev; struct rte_pci_device *pci_dev;

- PCI bus scan, probing, naming — all were part of librte_eal

int rte_eal_init(int argc, char **argv)

{
Hé_eal_pc i_initQ

rte_eal_pci_probe()

[

3 EXTERNAL USE

L |

Pre-16.11 Device<~Driver Model

- DPDK was an inherently PCI inclined model
- Core (EAL) libraries considered PCI objects as a first-class member

struct rte_eth_dev { struct rte_cryptodev { struct eth_driver {)
eth_rx_burst_t rx_pkt_burst; dequeue_pkt_burst_t dequeue_burst; struct rte_pci_driver pci_drv;
eth_tx_burst_t tx_pkt_burst; enqueue_pkt_burst_t enqueue_burst; -
struct rte_pci_device *pci_dev; struct rte_pci_device *pci_dev;

- PCI bus scan, probing, naming — all were part of librte_eal

int rte_eal_init(int argc, char **argv)

{
rte_eal _pci_init(Q)
rte_eal_pci_probe()

- Mempool handlers part of Itbrte _mempool core library
-New handler (hardware backed) meant changing the library

[

4 EXTERNAL USE

L |

Pre-16.11 Device<~Driver Model

Without changing EAL, adding a new set of rte_xxx_device/rte_ xxx_driver, was not possible.
(Or, of course, spin your own DPDK)

Core library changes are not easy — for a maintainer, as well as community.
They impact everyone irrespective of their size — need to ‘handle’ impact across all supported devices

S EXTERNAL USE

[

L |

16.11 and beyond...

- Three major constructs: Bus, Pool, Drivers (Net, Crypto)
All tied together through EAL

- NXP has published its drivers for above three constructs:
- FSLMC Bus driver
- DPAA2 hardware based mempool driver
- DPAA2 Poll Mode Driver

6 EXTERNAL USE

[

L |

16.11 and beyond...

- Three major constructs:

struct rte bus {
TAILQ_ENTRY(rte_bus) next;
const char *name;
rte_bus _scan_t scan;
rte_bus_probe_t probe;

- An example Bus ‘driver’

void rte_fslmc_driver_register(struct rte_fslmc_driver *driver) ;q—
void rte_fslmc_driver_unregister(struct rte_fslmc_driver *driver);

struct rte_fslmc_bus rte_fslImc_bus = {
_bus = {
.scan = rte_fslmc_scan,
-probe = rte_fslmc_probe,
}.
.device_list
.driver_list

rte_bus_register(struct rte_bus *bus);
rte_bus_unregister(struct rte_bus *bus);

RTE_REGISTER_BUS(nm, bus)

TAILQ HEAD_INITIALIZER(rte_fslmc_bus.device li

—

TAILQ_HEAD _INITIALIZER(rte_fslmc_bus.driver_li
};

RTE_REGISTER_BUS(FSLMC_BUS_NAME, rte_fslmc_bus.bus);

Global Bus list for all buses registered with
EAL:

TAILQ_HEAD(rte_bus_list, rte_bus);

Through
RTE_PMD_REGISTER_DPAA2(...)

Constructor, initiated from DPAA2 PMDs
Local list of Devices registered with the Bus:

TAILQ_HEAD(rte_fslImc_device_list,
rte_fslmc_device);

Local list of Drivers registered with the Bus:

TAILQ_HEAD(rte_fslImc_driver_list,
rte_fslmc_driver);

- rte_eal 1nit calls scan/probe for all registered buses - serially

7 EXTERNAL USE

[
L

16.11 and beyond...

- Three major constructs: Bus,

- Everything placed with ‘drivers/bus/fsImc’ folder. No changes in EAL!

8 EXTERNAL USE

[

L |

16.11 and beyond...

- Three major constructs:

struct rte_mempool_ops {
char name[RTE_MEMPOOL_OPS_NAMESIZE]
rte_mempool_alloc_t alloc;
rte_mempool_free_t free;
rte_mempool_enqueue_t enqueue;
rte_mempool_dequeue_t dequeue;
rte_mempool_get_count get_count;

Pool,

struct rte_mempool_ops_table {
rte_spinlock_t sl;
uint32_t num_ops;
struct rte_mempool_ops ops[---]

#define MEMPOOL_REGISTER_OPS(ops)

- An example Mempool ‘driver’

static struct rte_mempool_ops dpaa2_mpool_ops = {

.name = “dpaa2-,

.alloc = rte_hw_mbuf_create_pool,
_.free = rte_hw_mbuf_free_pool,
.enqueue = rte_hw_mbuf_free_bulk,
.dequeue = rte_hw_mbuf_alloc_bulk,

.get_count = rte_hw_mbuf_get_count,

};
MEMPOOL_REGISTER_OPS(dpaa2_mpool_ops);

Global array of all Mempool handlers
registered with EAL:

struct rte_mempool_ops_table
rte_mempool _ops_table

Default Mempool controlled through
configuration option:

CONFIG_RTE_MBUF_DEFAULT_ MEMPOOL_OPS=
“dpaa2«

And not limited to this. Can be explicitly selected through
combination of rte_mempool_create_empty and
rte_mempool_set_ops_byname

- APIs exposed by EAL for mempool create/destroy/enqueue/dequeue

9 EXTERNAL USE

[
L

16.11 and beyond...
- Three major constructs: Pool,

- Everything placed with ‘drivers/mempool/dpaa?2’ folder. No changes in EAL!

10 EXTERNAL USE ‘ k

16.11 and beyond...
- Three major constructs:

struct rte_dpaa2_driver {
TAILQ_ENTRY(rte_dpaa2_driver) next;

rte_dpaa2_probe_t probe;
rte_dpaa2_remove_t remove;
struct rte_driver driver;

struct rte_dpaa2_device {

, Drivers (Net, Crypto)

Registering driver with Bus: Ethernet instance of Device:
RTE_PMD_REGISTER_DPAA2(net_dpaa2, rte_dpaa2 probe(...) {

&rte_dpaa2_pmd) rte_eth _dev_allocate(name);

eth_dev->dev_ops= &dpaa2_ethdev_ops;
rte_dpaa2_driver rte_dpaa2_pmd =
-probe = rte_dpaa2_probe

TAILQ_ENTRY(rte_dpaa2_device) next; -remove = rte_dpaa2_remove, eth_dev_ops dpaa2_ethdev_ops {
struct rte _device device; -dev_configure = .._configure,
.dev_start = .. _dev_start,
.dev_stop = .. _dev_stop,
.dev_close = .._dev_close,

- What changed from 16.07... i i

- rte_eth_dev _pci_generic_probe from librte_ether or ownimplementation of
rte XXX _driver.probe; Similarly for rte_eth _dev_pci_generic_remove

- rte_eal _iInitnowcalls rte bus _scan() and rte_bus _probe()

= Bus operations scan over all registered buses; scanning for devices on a bus; probing for devices and attaching drivers

registered on the bus.

11 EXTERNAL USE

[
L

16.11 and beyond...
- Three major constructs: , Drivers (Net, Crypto)

e e

- Everything p-lé-(':é('jlwvvith ‘drivers/net’ and ‘drivers/crypto’ folder. As usual!

A 4
12 EXTERNAL USE ‘ k

DPAA2 Architecture — DPDK Layout

Allocator
(DPBP, DPMCP)

OS, N/\W
Stack

Eth (DPNI)

-
-

- 1
1

1

1

1

1

1

1

)

| \ A
' % = oo
\ ® 3|3
Container s 2= Q18
=
(DPRC) . ale oz
1 ‘\ <|© o|T
; ! \ [a] ¢>—<a
Device add/remove \\\ v
MC Bus Driver "\ DPIO MAC
(drivers/bus/fsimc) Driver (DPMAC)
PHY
Driver

Hardware

L

Derived from: https://www.kernel.org/doc/readme/drivers-staging-fsl-mc-README. txt

13 EXTERNAL USE

@ /drivers/net/dpaa2
/drivers/bus/fslimc

. /drivers/mempool/dpaa2

NXP’s implementation for FSLMC Bus,

DPAA2 Hardware Mempool and PMD
are available in 17.05-rc2

[

L |

https://www.kernel.org/doc/readme/drivers-staging-fsl-mc-README.txt

NEXT ~2 MIN
« Overview of Bus-Device-Driver Model

NXP Roadmap

- Coming soon...
-NXP’s Bus, hardware Mempool and PMD (net and crypto) are available in 17.05-rc2
- And hopefully these would also make it to DPDK 17.05
« Next...
- Event Driver Framework
- QoS Framework
- Support for Flow Director

[

15 EXTERNAL USE

L |

SECURE CONNECTIONS
FOR A SMARTER WORLD

	DEVICE TYPE AGNOSTIC DPDK: AN UPDATE
	Next ~12 min
	Next ~10 min
	Pre-16.11 DeviceDriver Model
	Pre-16.11 DeviceDriver Model
	Pre-16.11 DeviceDriver Model
	16.11 and beyond…
	16.11 and beyond…
	16.11 and beyond…
	16.11 and beyond…
	16.11 and beyond…
	16.11 and beyond…
	16.11 and beyond…
	DPAA2 Architecture – DPDK Layout
	Next ~2 min
	NXP Roadmap
	Slide Number 17

