
DPDK	Summit	- San	Jose	– 2017

BMAcc: Accelerating P4-
Based Data Plane with
DPDK

#DPDKSummit

PEILONG	LI *, XIAOBANWU *, YAN	LUO *,	LIANG-
MIN WANG +,	MARC	PEPIN	+,	ATUL KWATRA+,	
AND	JOHN	MORGAN	+
*	UNIVERSITY	OF	MASSACHUSETTS	LOWELL
+ INTEL	CORPORATION

2#DPDKSummit

Agenda

u Background	of	P4	and	BMv2

u Problems	and	design	motivations

u Overview	of	BMAcc &	performance	optimizations

u Performance	evaluation

u Future	directions
u Conclusion

3

P4 Language and P4 Behavior Model
v2

u Programming	Protocol-Independent	Packet	Processors	(P4)
u Simple	semantics,	customizable	headers	&	dataplane functions

u P4	program	à P4	Frontend	Compiler	à Python	IR
à Backend	Compiler	à Target	(software	switch,	NPU,	etc.)

u P4	Behavior	Model	version	2	(BMv2)
u BMv1	is	deprecated:	requires	re-compilation	for	every	P4	program.

u BMv2	is	a	static	executable:	software	switch	consists	of	building	blocks	
(parser,	deparser,	match-action	tables,	etc.)

u Configured	by	JSON:	P4	program	à p4c-bm	à JSON	configà BMv2	(static)

4

Problems of BMv2

u A	great	software	switch	to	verify	the	“behavior”	of	a	P4	program

u Poor	performance	as	a	software	switch
u 99.993%	packet	drop	rate	with	64-byte	packet	on	10	Gbps link

u Uses	libpcap,	Linux	NIC	driver,	single-threaded,	single	RX	queue	(no	RSS),	
unnecessary	memory	copy,	etc.

add port

polling and
receiving packets

init_from_command_line_options

push packets into
in_buffer

receive

in_buffer

Thread 0
take packets from

in_buffer

P4 pipeline

push packets to
out_bufferThread 1

pipeline

out_buffer

Thread 2

Take the packets from
out_buffer and

transmit

transmit

Thread 1 Thread 3

Receiving TransmittingProcessingInitialization

5

Motivations

u Design an AcceleratedData Plane	BMAcc for P4:
u Not a P4 compiler (e.g. PISCES [1], P4ELTE [2]), a P4	target	on multicore platforms.
u A substitute of BMv2 but with line rate performance.

u PerformanceAcceleration:
u Leverages DPDK libraries and PMD driver for faster packet I/O.
u Applies multiple optimization techniques: reduced memory copy,multithreading, SSE instr.

u Transparent to P4 Programs:
u Support all P4 programsand DPDK-compatible platforms.
u Not require P4 source code, only JSON config files.

[1] Shahbaz et al. 2016. PISCES: A Programmable, Protocol-Independent Software Switch. In SIGCOMM '16.
[2] Laki et al. 2016. High speed packet forwarding compiled from protocol independent data plane specifications.
In SIGCOMM '16.

6

Design Overview and Three
Optimizations

u The Design Overview

u Three Optimizations
u Opt 1:① PCAPà DPDK;② Linux driverà PMD;③ Single threadà RSS multi-queue

u Opt 2:① rm redundantmemcopy in Receive;② rm MUTEX for each parsed header

u Opt 3:① P4 LPM à DPDK LPM;② SSE instructionsused byDPDK.

add port

Notify the tasks for
slave cores

init_from_command_line_options

Master: Thread 0

Recv packets from
RX queues

Pipeline Table
Lookup with SSE

Send packets to
TX ring

Slaves: Thread 1, 2, 3, ..., N

Multithreaded tasks

Detect PMD
Devices

Slave cores
waiting for tasks

DPDK EAL RX Queues

......

TX Ring

......

7

Evaluation Setup

u 2 Intel Supermicro Servers [1] w/ 2 *	10 GbE NIC cards on each server.

u SM1:
u TX: pktgen - 10 Gbps trafficwith randomdst IP

u RX: count the received packets

u SM2:
u BMv2 Simple Router target.

u Lookup table, forward/drop.

DPDK
pktgen

BMv2
Simple
Router

TX

RX

RX

TX Forward

Check rule

10 Gbps

SuperMicro Server 1 SuperMicro Server 2

[1] Intel Supermicro server 1U based on Intel® Xeon® processors D-1540 @ 2.0 GHz, Niantic 82599 10 GbE NIC.

8

Test 1: Hardware Performance
Verification

u NIC	TX	Capability:
u TX end always sends 64*1024*1024 packets with 256*1024 distinct flows

u

99.85% 99.70%

98.66%

98.00%

100.00%

1500 750 64

Pa
ck

et
Re

ce
iv

in
g

Ra
te

Packet Size (Byte)

Packet Receiving Performance Test

RX Rate

u NIC	RX	Capability:
u RX end only receives packets and

then drops.

u No transmission to the out-port.

Packet Size (byte) Throughput Framing rate Duration
1500 9.8 Gbps 9.9 Gbps 79 Sec
750 9.7 Gbps 9.9 Gbps 41 Sec
64 7.7 Gbps 9.9 Gbps 4.7 Sec

9

Test 2: Performance on a Single Core
with Different Optimizations

u Vanilla	BMv2	only	supports	single	thread.

u Performance	comparison:	PCAP	(vanilla)	à Opt1	à Opt	1,2	à Opt	1,2,3

1. Almost all DPDK
versions outperform
PCAP

2. More opts à higher
performance

3. Opt1 single core
version: DPDK has
no evident
performance gain

10

Test 3: Performance on 8 Cores with
Different Optimizations

u PCAP	is	not	on	the	chart

u Performance	comparison:	Opt	1	à Opt	1,2	àOpt	1,2,3

1. 3x, 5.5x, 23x
increase over single
core vanilla BMv2
for large, mid, and
small packet sizes

2. Reach line rate for
large and mid sized
packets with 3 opts

3. How about 64-byte
packet?

11

Test 4: Find the Performance Killer for
Small Packets

u Five major stages in P4 Processing:
u RXà Parserà LPMà Deparserà TX

u Gradually add stages to this pipeline to find the biggest performance drop

u In experiment: 4 Cores, 64-byte packet
1. Perf impact breakdown:

TX: 20%
Parser: 58%
Deparser: 5%
LPM: 9%

2. TX+RX à Similar to l3fwd (80%
PRR as reported)

3. Parser – creates NEW objects for
each packet à time
consuming

Similar to
l3fwd

58%
Drop

12

Test 5: Performance with Various # of
Cores

u Take the	Opt 1,2,3 case	(the most optimized)

1. Large packet
reaches line rate w/
4 cores; mid packet
w/ 8 cores

2. Performance is
almost proportional
to # of cores

3. Not shown here, but
the results are
consistent with Opt 1
and Opt 1-2.

13

Test 6: The Performance of LPM
Processing

u P4 LPM: leverages Judy for creating and accessing dynamic arrays

u DPDK LPM: SSE instructionsand cache friendly data structures

1. DPDK-LPM is slightly better
for all cases

2. DPDK-LPM performance
benefit is more evident
when ruleset is smaller and
processing cores are fewer
because of the overhead of
Judy library.

14

Conclusion and Future Work

u The DPDK-accelerated BMv2 reaches 10 Gbps line rate for mid & large-
sized packets, and yields 23x performance boost on the small packets.

u To address the Parser impact on 64-byte packet, we need to pre-allocate	
memory spaces for Packet instances	

u We proposedmultiplepractical optimizationson the BMv2 which are
instrumental to all P4-based data plane designs on multicore platforms.

u We conducted in-depth performance study on the proposed BMAcc
system	from	architecture	and	software	perspectives.

Questions?

Peilong	Li,	Ph.D.
Research	Assistant	Professor
https://peilong.github.io

UMass	Lowell	ACANETS	Lab
http://acanets.uml.edu

