Software-Based Networks:
Leveraging
high-performance NFV
platforms to meet future
communication challenges

K.K. Ramakrishnan
University of California,
Riverside

(kk@cs.ucr.edu)

Joint work with: Timothy Wood (GWU) ,
our students, collaborators

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Network Function Virtualization

. Run network functions in software

Router Firewall Router Switch Firewall
‘ VM VM Docker
e B

Switch LB
ﬂk\r

[o |

Commodity Server

. More flexible than hardware
- Easy to instantiate new NFs
- Easy to deploy NFs; Easier to manage NFs
- Network Service Providers are migrating towards a
software based networking infrastructure

Virtualization Overheads

 Virtualization layer provides (resource and performance) isolation
among virtual machines

* Isolation involves many functions such as access permissions (security),
ability to schedule and share etc.

 Network overhead (packet delivery) is one of the most critical
concerns

* A generic virtualization architecture includes several critical
boundaries — host OS, virtual NIC, guest OS, and guest user
space—getting packet data there includes memory copies

A Guest User

JUBWIBAOI 18)0ed

Jinho Hwang, K.K. Ramakrishnan, and Timothy Wood, “NetVM: High Performance and Flexible Networking using
Virtualization on Commodity Platforms,” NSDI “14.

R

R

Our Contributions with NetVM

A virtualization-based high-speed packet delivery platform

- for flexible network service deployment that can meet the
performance of customized hardware, especially when involving
complex packet processing

Network shared-memory framework

- that truly exploits the DPDK (data plane development kit) library to
provide zero-copy delivery to VMs and between VMs (containers)

A hypervisor-based switching algorithm

- that can dynamically adjust a flow’s destination in a state-dependent
and/or data-dependent manner

High speed inter-VM communication

- enabling complex network services to be spread across multiple VMs

Security domains
- that restrict access of packet data to only trusted VMs

OpenNetVM - NFV Open Source Platform
http://sdnfv.github.io

e Network Functions run in Docker containers

 DPDK based design, to achieve zero-copy, high-speed
/0

e Key: Shared memory across NFs and NF Manager

* Created an open source version

e Multiple industrial partners evaluating use of
OpenNetVM

* Of course, there are many competitors(e.g., Fast Data
Project (fd.io), etc.)

R

OpenNetVM Architecture

Container 1

.NF Manager (with DPDK)
runs in host’s User Space

'NFs run inside Docker
containers

- NUMA-aware processing

Container N

|

Shared Memory

\[Packét‘] ["F”acket]” ?@
V4

‘ NF Manager

Host User Space
Linux / DPDK
NIC

Y
-

- Zero-copy data transfer to and between NFs

- No Interrupts using DPDK poll-mode driver

- Scalable RX and TX threads in manager
- Each NF has its own ring to receive/transmit a

packet descriptor

- NFs start in 0.5 seconds; throughput of 68 Gbps w/ 6

CcOores

R

6

Chained Packet Delivery

« Packets in memory do not have to be copied

« Applications in containers pass packet referencesto
other NFs — through the descriptor ring

« Only one application can access a given packet af
any fime for writing — avoid locks

(VM N ETY

Applications] [Applications

[N~ Newm S]

Hypervisor User Space

R

Trusted and Untrusted Domains

Virtualization should provide security guarantees among VMs
OpenNetVM provides a security boundary between trusted

and untrusted NFs

Unfrusted NFs cannot see packets from OpenNetVM
Grouping of trusted NFs via huge page separation

(#1 Trusted VMs)

[VM
|

R

(#2 Trusted VMs)

J™)

(Non-Trusted VMs)

-3~ ||| =i ¥ JI U
= Memory ' & | = "Memory I “
__Sharing__; __Sharing__,
[N NetVM / J .
Hypervisor

Generic Net. Path

Performance w/ Real Traffic

. Send HTTP traffic through OpenNetVM

- 1 RX thread, 1 TX thread, 1 NF = 48Gbps

- 2 RX threads, 2 TX threads, 2 NFs = 68Gbps (NIC bottleneck?)
- 2 RX threads, 5 TX threads, chain of 5 NFs = 38Gbps

. Fast enough to run a software-lbased core router;
Middleboxes that function as a ‘bump-in-the-wire’

70
=60 |
2 50
550 [
— 40 |
-0

230 L
g

320 |
<10 |

R 1RXATX/ANE 2RX/2TX/2NF 5 NF Chain

Service Chain Performance

. Negligible performance difference between
processes and containers.

- OpenNetVM sees only a 4% drop in throughput for a six NF
chain, while ClickOS falls by 39% with a chain of three NFs.

ONVM-Process s Clickos s
ONVM-Docker mm

I T
o U O

Throughput (Mpps)

o U

1 2 3 6
Chain Length

0y

Service Diversity & Multiple Flows

- Atypical NF platform may host NFs for many different service
chains
Each flow may need customized services

Transco

Video der

Quality
Detector Detector

Service Diversity & Multi-Flows

NF platforms host NFs for many different service chains
Each flow may need customized services
Many different flows, each with slightly different need

NE Platform

% Video Quality der

Transco
Detector

Detector

Monolithic NFs
Multiple flows have to go through an NF

Scheduling packets: complex, multiple flows share packet queues
NF must classify flows? NF manager?

Manage flow interference

Scalability: avoid restriction of 1 core per NF

- flow 1 i Alow - flow 1

] 1
] 1
/'] 1
1 1
! L}
I [I B |
n
n
(]

Packet
Queue

| [WowEN [0S
,—,-

Need a high speed platform which can isolate and process
flows with fine granularity and efficiently use resources

Goal: Per-Flow NFs

Make the flow the scheduling entity

Deploy a unique NF for eac

v | [N

Per-
flow
Queue

Core

v | (8]

F || NF

Core

\

NF

N flow or class of flows

v | (8]

Core

Flurries

. A scalable platform for unique, short-lived NFs

. (ACM CoNext 2016)
Run unlque NFs per row or per class of flows

Be nefits: | | |
" “=:do flow-level performance management -
o Flexible and customized ‘flow‘__processmg_

Flurries

A scalableplatform for unique, short-lived NFs

" Flurries contributions:

e Hybrid polling and interrupts to efficiently run 1000s of NFs
| e Flow director maps flows to NFs; NFlib recycles NFs
e Adaptive wakeup system and prioritized NF scheduling

AN

.Challenges |
- How to move packets efficiently across service chains?
.- How to run large numbers of NFs on a host?
.- How to manage the mapping of flows to NFs?

How to schedule NFs?

Flurries Performance: Benefit of Hybrid
Polling & Interrupts

Throughput drops as the number of NFs increases on the core for
polling and netmap

Flurries achieves good performance even with large number of

NFS16
» O

0p)
o
12
= .
— O Polling Netmap
5 8 Flurries
-
=
o 4
£
|_

Scale Out

Run up to 80,000 NFs in a one second interval per host

- Achieve 30Gbps traffic rate and incur minimal added
latency to web traffic

3 40

. 15

& EE
iy 25 =
K 20 &
s 15 5
=z ;O 5
©

- 0

1 core 2 cores 3 cores

NF Vnice

A user space control framework for scheduling NFV chains.
ACM Sigcomm 2017

e NFVnice in a nutshell:

— Complements the existing kernel task schedulers.
* Integrates “Rate proportional scheduling” from hardware schedulers.
* Integrates “Cost Proportional scheduling” from software schedulers.

— Built on OpenNetVMI[HMBox'16, NSDI'14]: A DPDK based NFV platform.

* Enablesdeploymentofcontainerized (Docker) or process based NFs.

— Improves NF Throughput, Fairness and CPU Utilization through:
* Proportionaland Fairshare of CPU to NFs: Tuning Scheduler.
* Avoid wasted workand isolate bottlenecks: Backpressure.

* Efficient /O management framework for NFs. &

NFVnice: Building Blocks

[/ Work-conserving and proportional
cgroups” | scheduling (within each core)

‘ N U
paclC8r QU GO /%f?}?)% AR B,

pressikerne f%gl)uret at limits, accounts

andisolatestheresource usage (CPU,—

= FFooharf il fatemethy/od gstjast -
’EC"’ CERIRETR AT Btaedas)

/0
¢ Mgt Efficient Disk /O Mgmt. Library

20

cgroups

Rate-Cost Proportional Fairness

* Whatis Rate-Cost Proportional Fairness?
— Determines the NFs CPU share by accounting for both:

* NF Load (Avg. packet arrival rate, instantaneous queue length)
* NF Priorityand per-packet computation cost (Median)

e Why?
— Efficient and fair allocation of CPU to the contending NFs.
— Provides upper bound on the wait/Idle time for each NF.
— Flexible & Extensible approach to adapt any QOS policy.

Summary

* Networks are changing — moving to a software
base
* SDN’s centralized control
* NFV’s software based implementations

* NetVM/OpenNetVM efforts enhance industry
direction

* NFV platform provides significant performance
Improvement

* A more coherent and effective software network
architecture

R

Getting OpenNetVM

e Source code and NSF CloudLab images at
http://sdnfv.github.io/

R

