

Unikraft DPDK

Sharan Santhanar

What we saw

Introduce Unikraft

Unikraft meets DPDK

Unikraft within DPD

Synergy between Unikraft an

Building DPDK Unikernels with Unikraft

Sharan Santhanam

NEC Laboratories Europe GmbH sharan.santhanam@neclab.eu

24th June 2019

This work has received funding from the European Unions Horizon 2020 research and innovation program under grant agreements no.825377 (UNICORE). This work reflects only the authors views and the European Commission is not responsible for any use that may be made of the information it contains

Overview

Unikraft **DPDK**

1 What we saw

Introduce Unikraft

3 Unikraft meets DPDK

4 Unikraft within DPDK

5 Synergy between Unikraft and DPDK

VNF with DPDK Ecosystem

Unikraft **DPDK**

VNF with DPDK Ecosystem

Unikraft **DPDK**

What we saw

GUEST Operating System Virtio Driver

Can we do better?

- → Guest OS specialization
- → Boot Time
- → Isolation within the guest

VNF with DPDK Ecosystem

Unikraft **DPDK**

What we saw

GUEST Operating System Virtio Driver

Can we do better?

- → Guest OS specialization
- → Boot Time
- → Isolation within the guest

Let's discuss Unikernel

Unikernel - Do One Thing and Do It Well

Unikraft **DPDK**

What we saw

Virtual Machine

Unikernel

Арр А	Арр В
Lib A	Lib B
Hypervisor	
Hardware	

$\mathsf{Uni}_{\mathsf{kernel}}$ - Do One Thing and Do It Well

Unikraft **DPDK**

What we saw

Unikernel

→ Unikraft are purpose built

- Thin kernel layer
- Single monolithic binary

Unlkernel - Do One Thing and Do It Well

Unikraft **DPDK**

Unikernel

- → Unikraft are purpose built
 - Thin kernel layer
 - Single monolithic binary
 - No isolation within the Unikernel needed
 - Flat address space

Unlkernel - Do One Thing and Do It Well

Unikraft **DPDK**

Unikernel

- → Unikraft are purpose built
 - Thin kernel layer
 - Single monolithic binary
 - No isolation within the Unikernel needed
 - Flat address space
- → Full Stack Specialization

Unikraft **DPDK**

- --- Fast instantiation, destruction and migration times
 - 10 milliseconds or less (LightVM [Manco SOSP 2017], Jitsu [Madhvapeddy, NSDI 2015])

Unikraft **DPDK**

- --- Fast instantiation, destruction and migration times
 - 10 milliseconds or less (LightVM [Manco SOSP 2017], Jitsu [Madhvapeddy, NSDI 2015])
 - Low memory footprint
 - Few MBs of RAM or less (ClickOS [Martins NSDI 2014])

Unikraft **DPDK**

- 10 milliseconds or less (LightVM [Manco SOSP 2017], Jitsu [Madhvapeddy, NSDI 2015])
- Low memory footprint
 - Few MBs of RAM or less (ClickOS [Martins NSDI 2014])
 - High Deployment Density
 - 8k guests on a single x86 server (LightVM [Manco SOSP 2017])

Unikraft DPDK

Sharan Santhana

What we saw

Introduc Unikraft

Unikraft meets DPDK

Unikraft within DPDI

Synergy between Unikraft an DPDK

→ Fast instantiation, destruction and migration times

- Few MBs of RAM or less (ClickOS [Martins NSDI 2014])

 8k guests on a single x86 server (LightVM [Manco SOSP 2017])

 10-40Gbit/s Ethernet throughput with a single guest CPU (ClickOS [Martins NSDI 2014], Elastic CDNs [Kuenzer VEE 2017])

Unikraft **DPDK**

What we saw

--- Fast instantiation, destruction and migration times

10 milliseconds or less (LightVM [Manco SOSP 2017], Jitsu [Madhyapeddy, NSDI 2015])

8k guests on a single x86 server (LightVM [Manco SOSP 2017])

- 10-40Gbit/s Ethernet throughput with a single guest CPU (ClickOS [Martins NSDI 2014], Elastic CDNs [Kuenzer VEE 2017])

- Small trusted compute base
- Strong isolation by hypervisor

La-la Land

Unikraft **DPDK**

What we saw

So, Unikernel

- ♠ Isolation and reduced attack surface.
- ♠ Faster Instantiation Time
- ♦ Smaller image size

La-la Land

Unikraft **DPDK**

What we saw

So. Unikernel

- ★ High Performance
- Isolation and reduced attack surface.
- Faster Instantiation Time
- Smaller image size

The problem with Unikernel development:

- Building take several months or longer
- Potentially repeat the process for each target application
- "Specialization" is hard to build

Ooops!!

Thats not an effective way of doing things!

What is Unikraft?

Unikraft **DPDK**

Introduce Unikraft

Objectives

- Support wide range of use cases
- Simplify building and optimizing
- Common and shared code base
- Support different hypervisors
- CPU architectures

What is Unikraft?

Unikraft **DPDK**

Introduce Unikraft

Objectives

- Support wide range of use cases
- Simplify building and optimizing
- Common and shared code base
- Support different hypervisors
- CPU architectures

Unikraft

- Everything is a library
- Decomposed OS functionality
- Unikrafts two components:
 - Library Pool
 - Build Tool

What is Unikraft?

Unikraft **DPDK**

Introduce Unikraft

Objectives

- Support wide range of use
- Simplify building and optimizing
- Common and shared code base
- Support different hypervisors
- CPU architectures

Unikraft

- Everything is a library
- Decomposed OS functionality
- Unikrafts two components:
 - Library Pool
 - Build Tool

Source is BSD-licensed

Kconfig based build system

Unikraft **DPDK**

Introduce Unikraft

Take an existing application

- For example, a Python application or a l2fwd

Unikraft **DPDK**

Introduce Unikraft

Take an existing application

- For example, a Python application or a l2fwd
- Pick Unikraft functionality
 - Pool of drivers and standard libraries

Unikraft **DPDK**

Introduce Unikraft

→ Take an existing application

- For example, a Python application or a l2fwd
- → Pick Unikraft functionality
 - Pool of drivers and standard libraries
- → Pick a platform and architecture
 - Pool of drivers and standard libraries

Unikraft **DPDK**

Introduce Unikraft

- Take an existing application
 - For example, a Python application or a l2fwd
- → Pick Unikraft functionality
 - Pool of drivers and standard libraries
- → Pick a platform and architecture
 - Pool of drivers and standard libraries
- → Build Unikraft application

Unikraft - DPDK Target Arch?

Unikraft DPDK

Sharan Santhanam

Introduce Unikraft

Unikraft meets DPDK

Unikraft

between
Unikraft and

Unikraft - DPDK Target Arch?

Unikraft DPDK

Sharan Santhanan

Introduc

Unikraft meets DPDK

Unikraft

Synergy between Unikraft an

- → Build System Integration
- → Specialization of Guest OS
- → Minimize modification to DPDK library

Unikraft DPDK

Sharan Santhana

Vhat we saw

Introduce Unikraft

Unikraft meets DPDK

Unikraft within DPD

Synergy between Unikraft ar

Unikraft Build system

- Config.uk (Kconfig based)
 - Handles dependencies across library
 - Enable/Disable Function

Title + D C Title The Control Control

- → Automatic config generation

 COURT (**)

 The config generation ()

 **The config gener
 - CPU feature flags

Unikraft **DPDK**

Unikraft meets **DPDK**

Unikraft Build system

- Config.uk (Kconfig based)
 - Handles dependencies across library
 - Enable/Disable Function
- Makefile.uk (make based)
 - [LIBNAME]_SRCS
 - [LIBNAME]_CFLAG
 - CELAG

- Automatic config generation
 - CPU feature flags
- Makefile (gmake)
 - SRCS INCLUDE

Unikraft **DPDK**

Unikraft meets **DPDK**

Unikraft Build system

- Config.uk (Kconfig based)
 - Handles dependencies across library
 - Enable/Disable Function
- Makefile.uk (make based)
 - [LIBNAME]_SRCS
 - [LIBNAME]_CFLAG
 - CELAG
- exportsyms.uk

- Automatic config generation
 - CPU feature flags
 - Makefile (gmake)
 - SRCS INCLUDE
- → version map

Unikraft DPDK

Sharan Santhanar

What we saw

Introduce Unikraft

Unikraft meets DPDK

Unikraft within DPDI

Synergy between Unikraft and DPDK

Unikraft Build system

- Config.uk (Kconfig based)
 - Handles dependencies across library
 - Enable/Disable Function
- → Makefile.uk (make based)
 - [LIBNAME]_SRCS
 - [LIBNAME]_CFLAG
 - CFLAG
- → exportsyms.uk

DPDK Build System

- $\rightsquigarrow \quad \text{Automatic config generation}$
 - CPU feature flags
 - Makefile (gmake)
 - SRCS - INCLUDE
 - CFLAG
 - DIRS
- → version map

→ Process DPDK Makefile.

Unikraft **DPDK**

Unikraft meets **DPDK**

Unikraft Build system

- Config.uk (Kconfig based)
 - Handles dependencies across library
 - Enable/Disable Function
- Makefile.uk (make based)
 - [LIBNAME]_SRCS
 - [LIBNAME]_CFLAG - CELAG
- exportsyms.uk

DPDK Build System

- Automatic config generation
 - CPU feature flags
 - Makefile (gmake)
 - SRCS INCLUDE
- → version map

→ Process DPDK Makefile.

▲ Add DPDK library

Unikraft **DPDK**

Unikraft meets **DPDK**

Unikraft Build system

- Config.uk (Kconfig based)
 - Handles dependencies across library
 - Enable/Disable Function
- Makefile.uk (make based)
 - [LIBNAME]_SRCS
 - [LIBNAME]_CFLAG
 - CELAG
- exportsyms.uk

DPDK Build System

- Automatic config generation
 - CPU feature flags
 - Makefile (gmake)
 - INCLUDE
- → version map

Process DPDK Makefile.

Add DPDK library

Support newer version of DPDK

Unikraft DPDK

Sharan Santhana

Nhat we saw

Introduce Unikraft

Unikraft meets DPDK

Unikraft within DPDI

Synergy between Unikraft and DPDK

Unikraft Build system

- Config.uk (Kconfig based)
 - Handles dependencies across library
 - Enable/Disable Function
- → Makefile.uk (make based)
 - [LIBNAME]_SRCS
 - [LIBNAME]_CFLAG
 - CFLAG
- → exportsyms.uk

- → Automatic config generation
 - CPU feature flags
 - Makefile (gmake)
 - SRCS
 INCLUDE
 - CFLAG
 - DIRS
- → version map

- → Process DPDK Makefile.
 - Add DPDK library
 - Support newer version of DPDK
 - → Add dpdk specific configuration file.

Unikraft - DPDK Target Arch

Unikraft DPDK

Sharan Santhanan

What we say

Introduce

Unikraft meets DPDK

Unikraft

Synergy between Unikraft and

Unikraft DPDK

Sharan Santhana

What we say

Introduc Unikraft

Unikraft meet

Unikraft within DPDK

Synergy between Unikraft and

Specialize the Guest OS

- → Memory management
- → Bus/Device Management
- → CPU Scheduling and CPU Features

Unikraft **DPDK**

Unikraft within DPDK

Specialize the Guest OS

- Memory management
- **Bus/Device Management**
- CPU Scheduling and CPU Features

Memory Management

- Unikraft: flat page table since boot
- Huge pages based 2MB sized pages
- Memory region can be explicitly assigned to the Application
- Custom memory allocator per memory region

Unikraft DPDK

Sharan Santhana

Nhat we sa

Introduce Unikraft

Unikraft meets

Unikraft within DPDK

Synergy between Unikraft and

Specialize the Guest OS

- → Memory management
- → Bus/Device Management
- → CPU Scheduling and CPU Features

Bus/Device Management

- ♦ A simpler bus/device interface
- ♦ Directly attached device and usable by DPDK with unikraft

Unikraft DPDK

Sharan Santhana

What we sa

Introduce Unikraft

Unikraft meets

Unikraft within DPDK

Synergy between Unikraft and

Specialize the Guest OS

- → Memory management
- → Bus/Device Management
- → CPU Scheduling and CPU Features

CPU Scheduling and CPU Features

- Application decides on scheduling on the core.
- Minimal interference / resource usage for other purpose within guest.

Future Work

Unikraft DPDK

Sharan Santhanam

....

Introduce Unikraft

Unikraft meets

Unikraft within DPDI

Synergy between Unikraft and DPDK → Add SMP support

→ Add NUMA support

→ Evaluate performance

→ Memory allocation natively by DPDK

→ Use DPDK drivers directly

Join us!

Unikraft DPDK

Sharan Santhanar

What we saw

Introduce Unikraft

Unikraft meet

Unikraft within DPDI

Synergy between Unikraft and DPDK

Wiki

https://wiki.xenproject.org

Documentation

http://www.unikraft.org

Sources

http://xenbits.xen.org/gitweb/ (Namespace: Unikraft)

Mailing List

minios-devel mailing list

NEC Maintainer Team

NEC Unikraft Team

What we think

Unikraft DPDK

Sharan Santhanai

What we saw

Introduce Unikraft

Unikraft meets DPDK

Unikraft within DPDł

Synergy between Unikraft and DPDK

Unikraft

- Support multiple platforms
- ♦ Specialized Guest OS
- Simpler Management Device
- Increased control for an application

DPDK

- Performance of Network stack
- Specialized VNF
- ♦ Wealth of knowledge DPDK driver
- ♦ Increased application base

What we think

Unikraft DPDK

Sharan Santhana

Vhat we sav

Introduce Unikraft

Unikraft meets DPDK

Unikraft within DPD

Synergy between Unikraft and DPDK

Unikraft

- Support multiple platforms
- Specialized Guest OS
- Simpler Management Device
- & Increased control for an application

DPDK

- Performance of Network stack
- Specialized VNF
- ♦ Wealth of knowledge DPDK driver
- & Increased application base

What do you think?