
Tim O’Driscoll

June 24th 2019

Network Platforms Group

Software Platform Considerations

A software platform should have the following characteristics:

Robust and reliable: Commercially supported software, or open source software
with a strong community

Proven: A widely used, “standard”, multi-vendor API

Easy to use: Well structured software, good documentation, easy to use API

High quality: New releases are thoroughly tested to minimize defects

Stable: Easy to upgrade to new releases

Portable: Allows application to run on a wide variety of target platforms

High performance: Supports maximum throughput

These items are
well covered by
DPDK

Difficult to balance
portability and
performance

Upgrading DPDK
versions is difficult

Network Platforms Group 3

Performance vs Portability

Performance

P
o

rt
a

b
il

it
y

Ideal
Solution

Note: Diagram is not to scale. For illustrative purposes only.

vSwitch Acceleration

Preserve portability
benefits of vswitch, but
improve performance by
leveraging NIC capabilities
and software
optimisations.

DPDK Usability

Improved DPDK
stability and ease of
use to make upgrades
easier and more
reliable

AF_XDP

AF_XDP

Promising “middle
ground” solution
combining good
performance and
portability

Kernel
vSwitch

SR-IOV

DPDK
vSwitch

Network Platforms Group

Open vSwitch Acceleration

Full offload via smart NICs

Partial offload via standard NICs:

EMC/DPCLS look-up

TCP Segmentation Offload

Software optimisations:

Signature Match Cache

Instruction set specific DPCLS

Virtio/Vhost acceleration:

Virtio 1.1

Data copy offload via Intel® QuickData Technology

Network Platforms Group

OVS supports offload of EMC/DPCLS lookup
to network adapter

Support for Intel® Ethernet® 700 Series
Network Adapter will be added in DPDK
19.08:

 I40E driver extended to support rte_flow MARK +
RSS action

 Supports up to 8K rules

Will be supported in future releases for Intel®
Ethernet® 800 Series Network Adapters.

MF_extract()

Locate
Flow

Complete
Action

FAST PATH

rte_flow(MARK+RSS)

MARK->to->Flow
FASTER PATH

Partial Offload: Overview

Network Platforms Group

Partial Offload: Performance

0

2

4

6

8

10

12

14

1 Flow / 1 Rule 1M Flows / 1K Rules 10M Flows / 1K

Rules

1M Flows / 10K

Rules

10M Flows / 10K

Rules

OVS Partial Offload

OVS OVS with Partial Offload

M
il

li
o

n
 P

a
ck

e
ts

 p
e

r
S

e
co

n
d

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Configurations: See slide Partial Offload: Test Configuration

Performance results are based on testing as of February 21st 2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product
or component can be absolutely secure.

http://www.intel.com/benchmarks

Network Platforms Group

TSO: Overview (Inter-Host, Egress)

VM1

OVS-DPDK

Application

Network Stack

Data

Data
T
C
P

I
P

E
T
H

Data
T
C
P

I
P

E
T
H

. . .

Data
T
C
P

I
P

E
T
H

Data
T
C
P

I
P

E
T
H

. . .

Data
T
C
P

I
P

E
T
H

Data
T
C
P

I
P

E
T
H

. . .

Without TSO

Segmentation
& checksum
calculation

done in
software on
CPU cores

Data

Data
T
C
P

I
P

E
T
H

Data
T
C
P

I
P

E
T
H

. . .

Data

Data

With TSO

Segmentation
& checksum
calculation

done in
hardware by

NIC

Benefit is greater for intra-host (VM -> VM) case because packets are never segmented so they don’t need to
be reassembled by the target VM

Network Platforms Group

TSO: Performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Configurations: http://www.openvswitch.org/support/ovscon2018/5/0935-lam.pptx

Performance results are based on testing as of December 5th 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product
or component can be absolutely secure.

Performance data reproduced
from: Enabling TSO in OVS-
DPDK, Tiago Lam, Intel,
presented at Open vSwitch
2018 Fall Conference.

http://www.intel.com/benchmarks
http://www.openvswitch.org/support/ovscon2018/5/0935-lam.pptx
http://www.openvswitch.org/support/ovscon2018/5/0935-lam.pptx
http://www.openvswitch.org/support/ovscon2018/

Network Platforms Group

Signature Match Cache (SMC)

Signature Match Cache (SMC) introduced as an
experimental feature in OVS 2.10.

SMC stores only a 16-bit signature for a flow, so it’s more
memory efficient than EMC:

With the same memory space, EMC can store 8K flows, SMC
can store 1M.

Can be used with EMC, or as an alternative to EMC:

If used with EMC, EMC is checked first, then SMC.

Performance data reproduced from: Testing the
Performance Impact of the Exact Match Cache, Andrew
Theurer, Red Hat, presented at Open vSwitch 2018 Fall
Conference.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Configurations: Testing performed by Red Hat. See Testing the Performance Impact of the Exact Match Cache for configuration details.

Performance results may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure.

http://www.openvswitch.org/support/ovscon2018/5/1330-theurer.pdf
http://www.openvswitch.org/support/ovscon2018/
http://www.intel.com/benchmarks
http://www.openvswitch.org/support/ovscon2018/5/1330-theurer.pdf

Network Platforms Group 12

High performance interface from kernel to user space:

1. eXpress Data Path (XDP) runs in the kernel device
driver and bypasses the network stack.

2. eBPF allows packet filtering in software.

3. AF_XDP socket provides high performance interface
to userspace applications.

Supports both DPDK and non-DPDK applications:

DPDK support is via the AF_XDP PMD introduced in
19.05 release. See Xiaolong’s presentation.

3 modes of operation:

SKB: Lowest performance. Works with any kernel NIC driver.

Copy: NIC driver must support XDP. All common drivers do.

Zero Copy: Highest performance. Additional driver changes
required. Only supported for Intel NICs (IXGBE & I40E) at
present.

AF_XDP currently only supports packet I/O. Extensions
required to support offloads/acceleration.

Packet size is currently limited to 4K.

AF_XDP: Overview

K
e

rn
e

l
U

se
r

S
p

a
ce

Non-DPDK
App

libc

DPDK App

AF_XDP
PMD

ethdev

Device Driver

Network
Stack

BPF

AF_INET /
AF_PACKET

AF_XDP 3

XDP
1

BPF 2

Network Platforms Group 13

AF_XDP: Use Cases
K

e
rn

e
l

U
se

r
S

p
a

ce

Container

libc

Container

AF_XDP
PMD

ethdev

AF_XDP

XDP BPF

Containers/Cloud Native

Provides high performance Kernel ->
Container interface.

Well suited to Cloud Native deployments.

K
e

rn
e

l
U

se
r

S
p

a
ce

Container

AF_XDP

XDP BPF

Network
Stack

BPF

Split Kernel/Userspace Traffic

If traffic needs to be split between
userspace and the Kernel network stack, this
can be done at source in the Kernel.

Can use hardware of software (BPF) filtering.

H
o

st
G

u
e

st

Kernel

VM

Kernel

AF_XDP

Userspace
App

Virtio or
SR-IOV

Virtualization

Not well suited to virtualized environments.

Could be used as interface between guest
Kernel and userspace app, but still need virtio
or SR-IOV to get traffic to the VM.

Network Platforms Group 14

AF_XDP: Performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Configurations: See slide AF_XDP: Test Configuration

Performance results are based on testing as of December 13th 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product
or component can be absolutely secure.

0

10

20

30

40

50

60

70

80

90

100

Rxdrop Txpush L2fwd

Intel® Xeon® E5-2660, 2.7 GHz

AF_XDP Busy Poll DPDK Scalar PMD DPDK Vector PMD

0

10

20

30

40

50

60

70

80

90

100

Rxdrop Txpush L2fwd

Intel® Xeon® Gold 6154, 3.0 GHz

AF_XDP Busy Poll DPDK Scalar PMD DPDK Vector PMD

AF_XDP not yet
fully optimised
for more recent

CPU
generations.

http://www.intel.com/benchmarks

Network Platforms Group 15

1. AF_XDP PMD enhancements (see Xiaolong’s
presentation for details):

Multi-queue

Busy poll support

Zero copy using external mbufs

2. Kernel enhancements:

Support for busy poll

More flexible memory handling

Rx and Tx optimisations

Remove 4K packet size limitation

3. Offload/Accelerator support:

Extend AF_XDP to support NIC offloads like TSO,
L3/L4 checksum etc.

4. BPF Bypass:

Provide option to skip BPF if all traffic is to be routed
to userspace

AF_XDP: Future Enhancements

K
e

rn
e

l
U

se
r

S
p

a
ce

Non-DPDK
App

libc

DPDK App

AF_XDP
PMD

ethdev

Device Driver

Network
Stack

BPF

AF_INET /
AF_PACKET

AF_XDP 3

XDP
2

BPF 4

1

Network Platforms Group

DPDK Portability/Usability Challenges

DPDK is typically tightly coupled (statically linked) to the application:

To support new hardware (e.g. a new NIC PMD), the application needs to be
updated.

Upgrading to new DPDK versions is not easy:

ABI changes occur in every release, so application changes are always
required when upgrading.

Goal is to move to a model where DPDK becomes platform software:

Dynamically linked

Sourced from OS distribution

Stable ABI makes upgrades easy

Simplifies porting of application to new hardware platforms

Network Platforms Group

GStreamer Application Binary Interface

• 100% backward compatible within Major
Versions (1.x).

• Stable since 1.4.5, typically < 1% change
between Major Versions.

DPDK Application Binary Interface

• 8.7% median ABI churn between quarterly
releases.

• LTS release is API stable for 2 years, however
limited backporting of new features or HW.

0%

20%

40%

60%

80%

100%

2014/12/18 2015/12/18 2016/12/18 2017/12/18 2018/12/18

Gstreamer Backward Compat.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

2016/7/1 2017/7/1 2018/7/1

DPDK Backward Compat.

https://abi-laboratory.pro/index.php?view=timeline&l=dpdkhttps://abi-laboratory.pro/index.php?view=timeline&l=gstreamer

DPDK ABI Churn

https://abi-laboratory.pro/index.php?view=timeline&l=dpdk
https://abi-laboratory.pro/index.php?view=timeline&l=gstreamer

Network Platforms Group

ABI Stability Proposal

Major ABI versions will be declared every two years and will be supported for
two years:

All new releases in that two year period will be backward compatible with the major ABI version.

The supported ABI version will be reflected in an individual library's soname -
<library name>.so.<major ABI version number>.

ABI changes in that 2 year period will be handled as follows:
The addition of symbols does not generally break the ABI.

The modification of symbols will be managed with ABI versioning.

The removal of symbols is generally an ABI breakage. Once approved, this will form part of the next
ABI revision.

Libraries or APIs marked as ``experimental`` are not considered part of the ABI
version and may change without constraint.

Network Platforms Group

ABI Stability Example

When DPDK 19.11 (LTS) is released, ABI v20 is declared as the supported ABI
revision for the next two years. All library sonames are updated to reflect the
new ABI version, e.g. librte_eal.so.20, librte_acl.so.20 . . .

DPDK releases 19.11 -> 21.08 are compatible with the v20 ABI. ABI changes are
permitted from DPDK 20.02 onwards, with the condition that ABI compatibility
with v20 is preserved.

When DPDK 21.11 (LTS) is released, ABI v21 is declared as the new supported
ABI revision for the following two years. The v20 ABI is now deprecated, library
sonames are updated to v21 and ABI compatibility breaking changes may be
introduced in 21.11.

Network Platforms Group

Other Possible Challenges

Consistency of DPDK APIs:
Implementation of the ethdev API can vary between PMDs.

Standardising this would be a big effort: a more detailed API specification, updates to drivers,
conformance tests in the DPDK community lab etc.

Benefit of doing this is unclear. Is this really an issue?

Newer APIs (cryptodev, compressdev etc.) are more consistent.

Software fall-backs:
Which hardware capabilities require software fall-backs?

How transparent do these software implementations need to be? Does DPDK need to do more to
make this transparent, or will this be handled in the application anyway?

More up to date DPDK versions in OS distributions:
OS distros typically package the LTS releases. This gives good stability, but means that they’re not up
to date with new features.

Is there a need for more up to date DPDK releases in OS distros?

Network Platforms Group

Notices and Disclaimers

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products.

For more information go to www.intel.com/benchmarks.

Performance results are based on testing as of February 21st 2019 (Partial Offload) and December 13th 2018 (AF_XDP), and may not
reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely
secure.

Configurations: See slides Partial Offload: Test Configuration and AF_XDP: Test Configuration.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at
www.intel.com.

Intel does not control or audit third-party data. You should review this content, consult other sources, and confirm whether referenced
data are accurate.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation.

http://www.intel.com/benchmarks
http://www.intel.com/

Network Platforms Group 24

Partial Offload: Test Configuration

Performance results are based on testing as of February 21st 2019

Intel® Xeon® Platinum 8160, 2.1 GHz, hyper-threading disabled

Intel® Ethernet Controller XL710, with firmware version 6.0.48442

Ubuntu 16.04.5 LTS

Linux kernel 4.4.0-137

OVS version: dpdk-latest branch 41b605b66f2ec1d85565d4be116ffbdd11c7b29f

DPDK version: 19.05-rc2 Pps switched (1 core) @ 64-byte

Single core performance with 64 byte packets in PHY-to-PHY configuration

Test scenarios (# offloaded flows sent / # rules matched):

1M flows / 1K rules: FLOWS: udp_src=1000-1999 x udp_dst=2000-2999, RULES: udp_src=1000-1999

10M flows / 1K rules: FLOWS: udp_src=1000-1999 x udp_dst=2000-11999, RULES: udp_src=1000-1999

1M flows / 10K rules: FLOWS: udp_src=1000-10999 x udp_dst=2000-2099, RULES: udp_src=1000-10999

10M flows / 10K rules: FLOWS: udp_src=1000-10999 x udp_dst=2000-2999, RULES: udp_src=1000-10999

Network Platforms Group 25

AF_XDP: Test Configuration

Performance results are based on testing as of December 13th 2018

Dual socket Intel® Xeon® E5-2660:

2.7 GHz with hyper-threading disabled

BIOS version GRRFCRB1.86B.0261.R01.1507240936

Dual socket Intel® Xeon® Gold 6154:

3.0 GHz with hyper-threading disabled

BIOS version SE5C620.86B.01.00.0433.022820170740

Both configurations:

Intel® Ethernet Controller XL710, with firmware version 6.01

DDR4 memory @ 2133 MT/s (1067 MHz), 64 GB total

Ubuntu 18.04.1 LTS

Linux Kernel v4.19-rc6-2008-g438363c0feb8

DPDK version 18.08

Tests use the xdpsock_user.c sample application:

Rxdrop: RX only without touching packet data

Txpush: TX only without touching packet data

L2fwd: RX + swap MAC headers + TX

	Balancing Application Portability and Performance
	Software Platform Considerations
	Performance vs Portability
	vSwitch Acceleration
	Open vSwitch Acceleration
	Partial Offload: Overview
	Partial Offload: Performance
	TSO: Overview (Inter-Host, Egress)
	TSO: Performance
	Signature Match Cache (SMC)
	AF_XDP
	AF_XDP: Overview
	AF_XDP: Use Cases
	AF_XDP: Performance
	AF_XDP: Future Enhancements
	DPDK Portability/Usability
	DPDK Portability/Usability Challenges
	DPDK ABI Churn
	ABI Stability Proposal
	ABI Stability Example
	Other Possible Challenges
	Disclaimers and Configuration Info
	Notices and Disclaimers
	Partial Offload: Test Configuration
	AF_XDP: Test Configuration
	Slide 26

