
5G-UPF Flow Based QoS using VPP & DPDK

KARUPPUSAMY M (SAMY)
VISWANATH BANDI (BANDI)
WIPRO TECHNOLOGIES

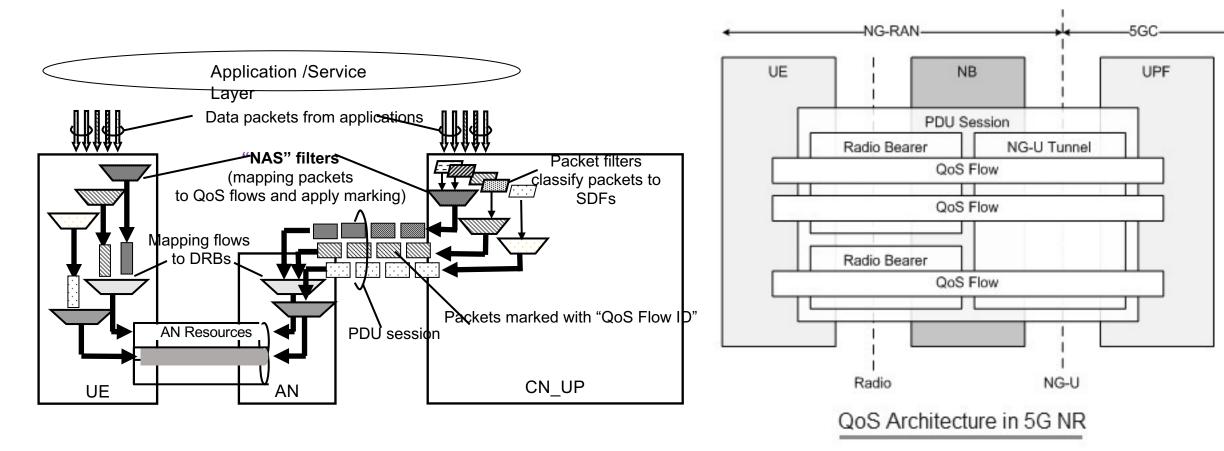
Background: Scope of GTP tunneling in 5G

PDU Sessions DRB and N3 GTP-U Tunnels

QoS Flow to DRB and GTP-U Tunnel Mapping

4G LTE:

A one-to-one relationship for an EPS bearer between the DRB (UE to eNB), the S1-U GTP-U tunnel (eNB to S-GW) and the S5-U tunnel (S-GW to P-GW).


5GC:

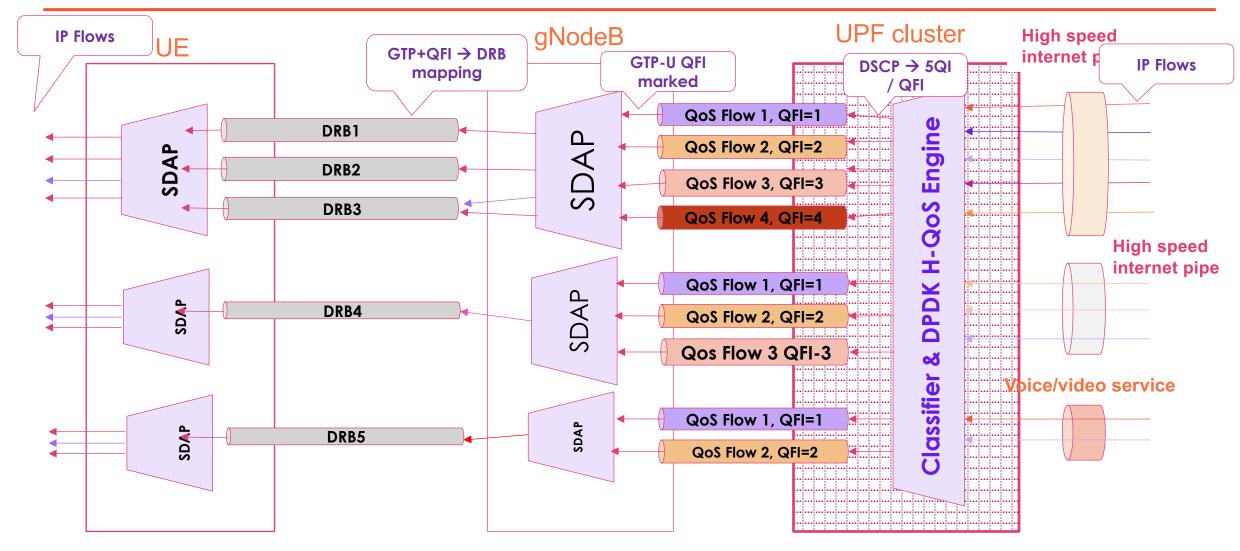
- Only a single user plane network function the UPF for transport of data between the gNB and the core.
- one-to-many relationship between the GTP-U tunnel on N3 and the DRBs on the air interface.
- Each QoS flow on N3 is mapped to a single GTP-U tunnel.
- gNB may map individual QoS flows to one more DRBs. Thus, PDU session may contain multiple QoS flows and several DRBs but only a single N3 GTP-U tunnel.

Note: A DRB may transport one or more QoS flows.

5G QoS Model (DRB-Flows-Tunnel)

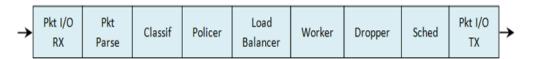
Source: 3GPP forum

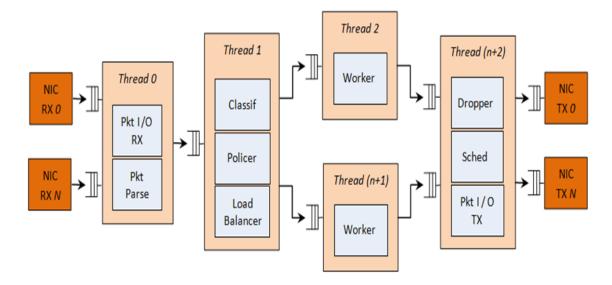
5G vs 4G QoS & Mapping procedure


QoS Parameter	5G	4G
QoS Identifier	5QI / QFI field in the GTP-U extended header	Quality class indicator. Usually the quality is differentiated at the tunnel level – specific tunnel for a service
IP flow : UE -> UPF	QoS flow	EPS Bearer
Flow identifier	QFI	Bearer ID
Reflective QoS	RQI	-

Aspects of classifying the 5G GTP-U packet stream for QoS purpose and level of classification

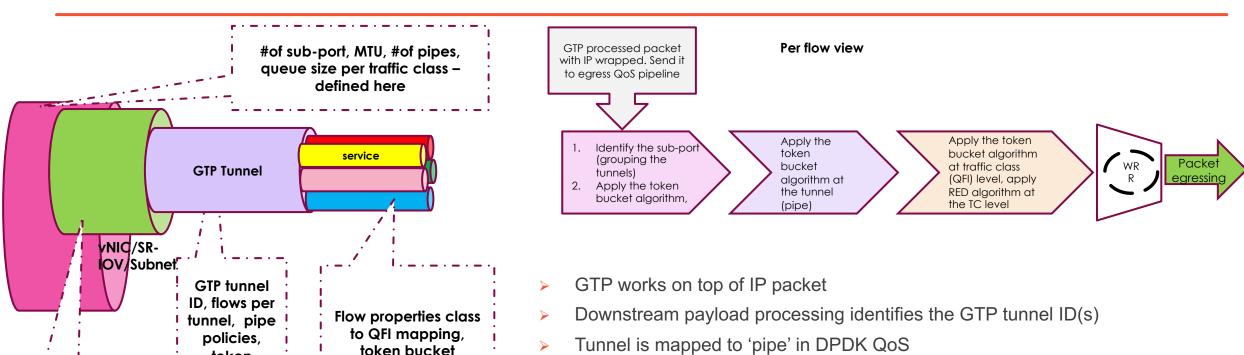
- Tunnel EndPoint ID along with QFI / 5QI parameters
- Mapping based on IP subnet, Source IP address, L4 port numbers, DSCP
- ➤ Identifying the service from the higher order classification (web, video, email and etc)
- DPI may not be always possible as the packets are mostly encrypted which leads to service aware planning from the deployment is required




5G UPF QoS plugin –Goals

- DPDK H-QoS Engine integration to the VPP
- Enhancing the VPP configuration infra to support 5G QoS
- Flow classifier support (from the management plane via yang model)
- Attaching the traffic to appropriate UPF instance in a cluster (VLAN with SR-IOV, tunnel to instance)
- Metering support throughout the hierarchy
- Upstream QoS mapping verification possible action
- Contribution to the VPP community

DPDK QoS pipeline



Port/vNIC/ SR-IOV -> UPF - instance / slice , GTP tunnel group per user -> Sub-port , GTP Tunnel (s) ->pipe, Flow -> Queue (WRR/SP)

QoS in Downstream

Group of tunnel per user maps to 'sub-port' (virtual port)

DSCP (service points mapped to 'traffic class' - further to QFI

set dpdk interface haos subport <interface> subport <subport_id> [rate <n>] [bktsize <n>] [tc0 <n>] [tc1 <n>] [tc2 <n>] [tc3 <n>] [tc3 <n>] [period <n>] set dpdk interface have pipe <interface> subport <subport_id> pipe <pipe_id> profile_id>

set dpdk interface haos placement <interface> thread <n>

token

bucket

properties

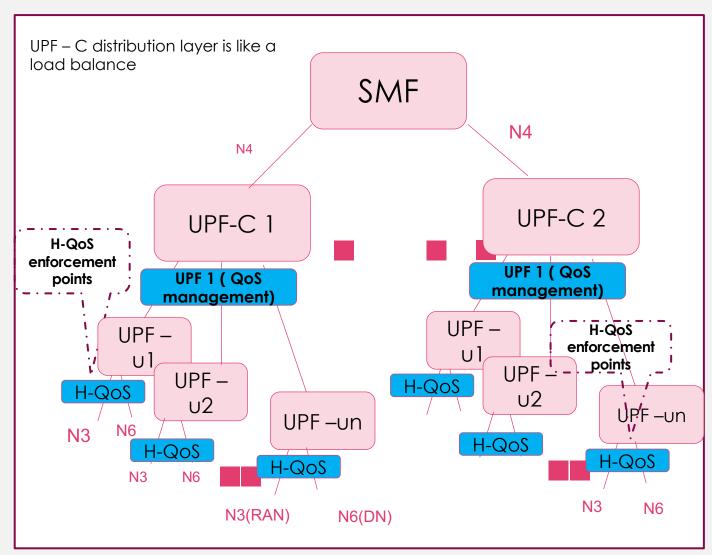
of tunnels

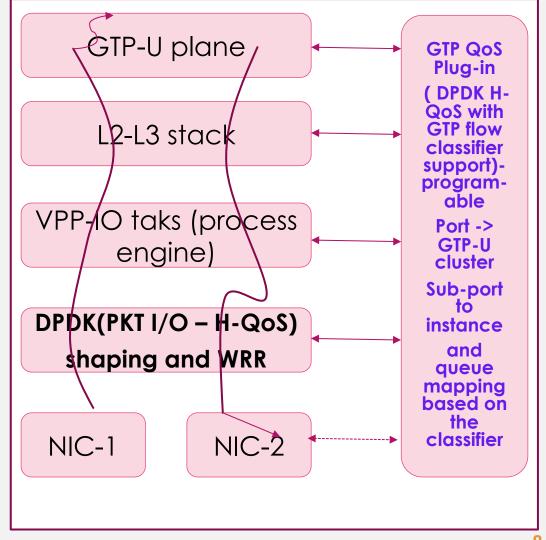
associated per

user (subport), token bucket properities

set dpdk interface haos pktfield <interface> id subport | pipe | tc offset <n> mask <hex-mask>

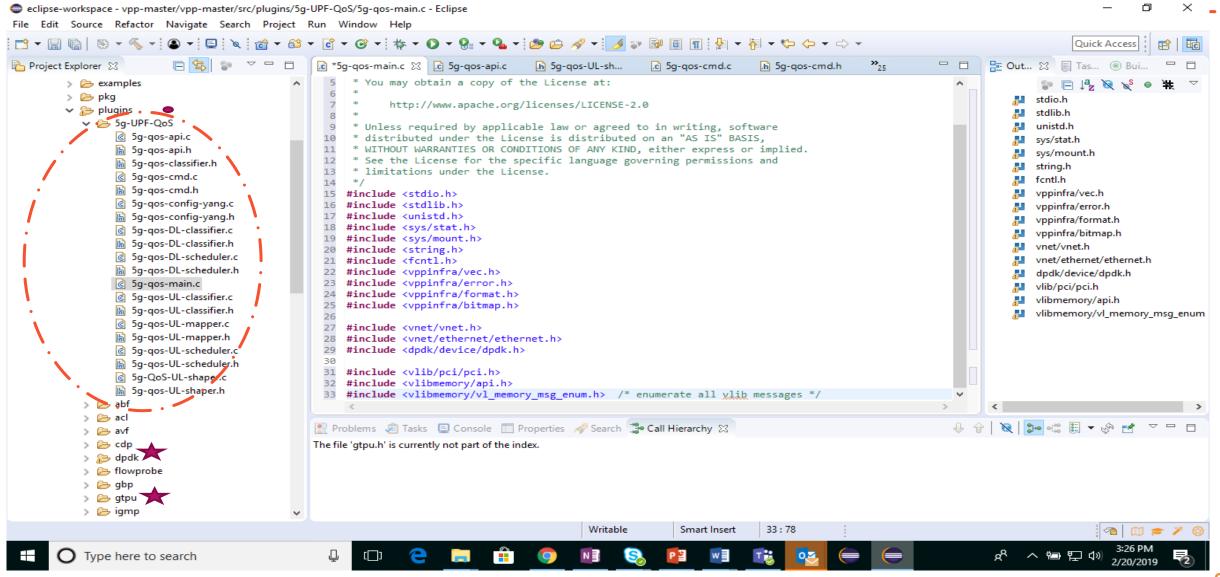
properties, WRR


properties for the


queues

set dpdk interface hqos tctbl <interface> entry <map_val> tc <tc_id> queue <queue_id>

UPF architecture and QoS



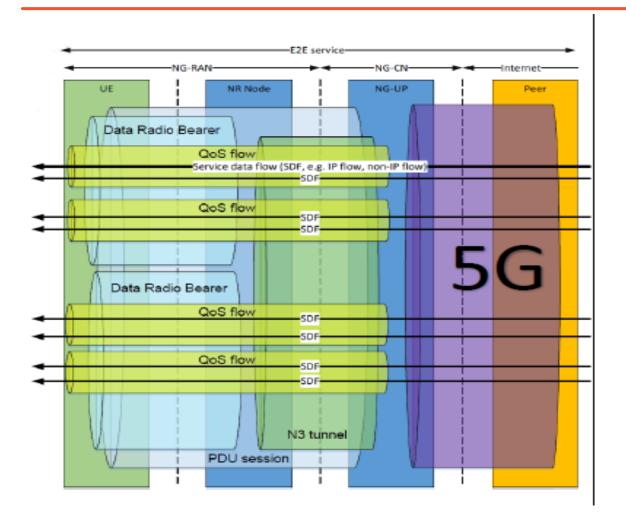
5g-qos-dpdk-vpp: Code organization

Future Work / Proposal – QoS plugin Enhancement

- DPDK
 DATA PLANE DEVELOPMENT KIT
- Possibility of Openflow enhancement to support the 5G flow classification to adapt in the SDN environment
- Pre-classification based L2 at SR-IOV / smartNIC to direct the traffic to the appropriate UPF instance + NSH header usage
- Adapting to Openstack ML2 path
- Docker based support
- Yang modeling for the GTP-U QoS

"

Thank You!

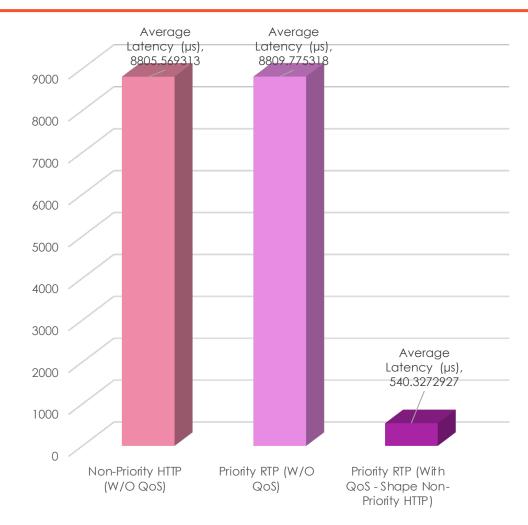


Backup slides

5G End to End QoS flow view

QoS flow

- the lowest level granularity within the 5G system
- the place policy and charging are enforced.
- One or more Service Data Flows (SDFs) can be transported in the same QoS flow, if they share the same policy
- All traffic within the same QoS flow receives the same treatment.


Picture Source: linkedin

Past work with OVS adaptation with DPDK H-QoS

- Open-flow based QoS mechanism which helps the controller to manage and enforce the QoS at network level
- Reduce packet loss, latency and jitter
- Ensure deterministic performance of real time applications
- QoS Differentiated service chaining path creation to accelerate certain services while queuing some of the non-critical TCP based service
- QoS with Openstack (with ML2 initial prototyping done)

Key use case: For the telco cloud traffic engineering and as well on the branch office QOS characterization

QoS requirements (@UE , @ AN & @UPF)

5QI Value	Resourc e Type	Defaul t Priorit y Level	Pack et Delay Budg et	Pack et Error Rate	Default Maximu m Data Burst Volume	Default Averaging Window	Example Services
81	Delay Critical GBR	11	5 ms	10 ⁻⁵	160 B	2000 ms	Remote control
82		12	10 ms	10 ⁻⁵	320 B	2000 ms	Intelligent transport systems
83		13	20 ms	10 ⁻⁵	640 B	2000 ms	Intelligent Transport Systems
84		19	10 ms	10-4	255 B	2000 ms	Discrete Automation
85		22	10 ms	10-4	1358 B NOTE 3	2000 ms	Discrete Automation

The following characteristics apply for processing of Downlink traffic:

- UPF maps User Plane traffic to QoS flows based on the SDF templates
- UPF performs Session-AMBR (Aggregate MBR) enforcement and also performs
 PDU counting for support of charging.
- Applying Reflective QoS (based on QAI ON) DSCP/ QFI markings Reflective QoS: For traffic that is subject to reflective QoS, the UL packet gets the same QoS marking as the reflected DL packet.

Note: How to use QFI to be understood well while mapping to DSCP and as well as doing the shaping / scheduling function (this is the function to be done in UPF for downstream and for upstream enforcement check to be done!)?

5G Valu	-	Default Priority Level	Packet Delay Budget	Packet Error Rate	Default Avg Window	Example Services
1	GBR	20	100 ms	10 ⁻²	2000 ms	Conversational Voice
2		40	15 0 ms	10 ⁻³	2000 ms	Conversational Video (Live Streaming)
3		30	50 ms	10 ⁻³	2000 ms	Real Time Gaming, V2X messages Electricity distribution – medium voltage, Process automation - monitoring
4		50	300 ms	10 ⁻⁶	2000 ms	Non-Conversational Video (Buffered Streaming)
65		7	75 ms	10 ⁻²	2000 ms	Mission Critical user plane Push To Talk voice (e.g., MCPTT)
66		20	100 ms	10 ⁻²	2000 ms	Non-Mission-Critical user plane Push To Talk voice
67		15	100 ms	10 ⁻³	2000 ms	Mission Critical Video user plane
75		25	50 ms	10 ⁻²	2000 ms	V2X messages
						4-

UL QoS requirements (@UE,@AN & @UPF)

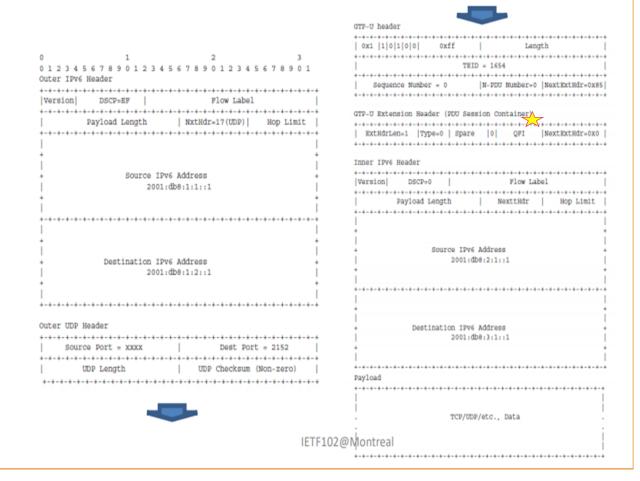
Following processing of uplink traffic:

- ➤ UE performs the classification and marking of UL User plane traffic, i.e. the association of uplink traffic to QoS flows, based on QoS rules.
- QFI filed is populated by RAN / AN
- (R)AN performs transport level packet marking in the uplink, transport level packet marking may be based on the 5QI and ARP (bearer allocation and retention priority) of the associated QoS Flow.
- UPF verifies whether QFIs in the UL PDUs are aligned with the QoS Rules provided to the UE or implicitly derived by the UE (e.g. in case of reflective QoS)

- > UPF performs Session AMBR(agg. Max bit rate) enforcement and counting of packets for charging.
- For UL Classifier PDU sessions, UL and DL Session AMBR shall be enforced in the UPF that supports the UL Classifier functionality.
- For multi-homed PDU sessions, UL and DL Session-AMBR is enforced separately per UPF that terminates the N6 interface (i.e. without requiring interaction between the UPFs)
- > (R)AN shall enforce Max BitRate (UE-AMBR) limit in UL and DL per UE for non-GBR QoS flows

Note: Highlighted items for UPF specific

Ref: 3GPP recommendations


Parameters to be dealt in the QoS Plugin

QoS profile and parameters

- > For each QoS flow: 5QI (5G QoS Identifier), ARP
- For GBR QoS flow only: GFBR (Guaranteed Flow Bit Rate), MFBR (Maximum Flow Bit Rate), AMBR & maximum packet loss rate for both uplink and downlink.
- For Non-GBR QoS only: Reflective QoS Attribute (RQA)
- > Resource Type (GBR, delay critical GBR or non-GBR)
- Priority level
- Packet Delay Budget
- Packet Error Rate
- Averaging Window
- > Maximum Data Burst Volume

GTP-U Packet Format Illustration

