@ DATA PLANE DEVELOPMENT KIT

DPDK - Kubernetes Plug-ins For
Accelerated Container Networking

M JAY
PLATFORM APPLICATION ENGINEER

Agenda /@) DPDK

Container — Overview
Container Vs VM
- What Do You Want?
Container & DPDK - Commonality
- Why Do You Need Multiple Network Interfaces?
Not All Nodes are created equal
Call For Action

Container Versus VM

2

DPDK

DATA PLANE DEVELOPMENT KIT

CONTAINER

App A App B

Bins/Libs Bins/Libs

Docker

Host 05

Infrastructure

App C

Bins/Libs

VM

App A App B

Bins/Libs Bins/Libs

Guest OS Guest OS

Hypervisor

Infrastructure

App C

Bins/Libs

Guest 05

Kubernetes Cluster

@ DATA PLANE DEVELOPMENT KIT

Master n
~ Kubernetes
Master 1

etcd storage

Controller m
Manager
APl Server

Kubernetes
Node n

Node 2
Node 1
Kubelet

&

docker docker

Docker containers

https://builders.intel.com/docs/networkbuilders/enabling new features in kubernetes for NFV.podf

Overview

@ DATA PLANE DEVELOPMENT KIT

Container:
Create an isolation boundary at application level. Portability, Ease of packing

Kubernetes:

Automation for deployment, management '
Application scaling of containers across clusters of servers (hosts) E

Pod:
Deployment unit. Can have single container or a small number of et
containers that share resources — tightly coupled

Node:

Worker or Minion — the machine where pods are deployed.

Kubernetes Master and Minion:
Master controls managing and scheduling of pods to minions

.@‘

AP| Server

|
@ Scheduler @ Kubelet

@ Controller Manager _._@ Service Proxy

https://thenewstack.io/taking-kubernetes-api-spin/

Overview

@ DATA PLANE DEVELOPMENT KIT

API Server:
Front end to the clusters through which all other components interact

Scheduler:
Decides target node onto which a pod would be sechduled

Controller Manager:
Communicates with API server
Creates, updates, deletes the pods, service etc.,

Container runtime:
Docker and Rocket for instance

Kubelet:
Agent that registers a node to the cluster. Syncs up with K8 master.
It creates, deletes pods

Kube-proxy

Network Proxy and reflects services as defined in Kubernetes API on each node

etcd

AP| Server

l
|
|
@ Scheduler @ Kubelet

@ Controller Manager _@ Service Proxy

. . =) DPDK
Macrocosm and Microcosm — Commonality @
ContainerTechnology [DPDK

Master Container DPDK Control Plane Master core O
Pod Lcore
Node Physical core

Multiple pods can reside Multiple Icores (hyperthreads) reside in one Physical core
in one Node

Microservice Pthread / Lthread
Minion Worker Core

. . =) DPDK
Macrocosm and Microcosm — Commonality 9
Confainer Technology |DPDK

API| Server DPDK Load Balancer Core

Scheduler 1) Pthread to Icore Mapping
2) Core Pinning, NUMA Affinity, Balanced IO
3) Hyperthreads sharing L1, L2 Cache
4) Non Siblings sharing L3 Cache but not L1, L2 Cache

Controller Manager Environment Abstraction Layer, EAL managing resources
Etcd Hashing — 5 tuple resolving to worker core
Kubelet DPDK Dispatcher

Kubernetes Cluster

@ DATA PLANE DEVELOPMENT KIT

Master n
~ Kubernetes
Master 1

etcd storage

Controller m
Manager
APl Server

Kubernetes
Node n

Node 2
Node 1
Kubelet

Pod 1

&

docker docker
Docker containers

Docker daemon

https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-application-note.pdf

2

DPDK

DATA PLANE DEVELOPMENT KIT

Enhanced Platform Awareness (EPA) represents a methodology and a related suite
of changes across multiple layers of the orchestration stack targeting intelligent
platform capability, configuration & capacity consumption. For communications
service providers (CommSPs) using virtual network functions (VINFs) to provision
services, EPA delivers improved application performance, and input/output
throughput and determinism.

EPA underpins a three-fold objective of the discovery, scheduling and isolation of
server hardware capabilities. This document is a comprehensive description of EPA
capabilities and the related platform features on Intel” Xeon® Scalable processor-
based systems exposed by EPA. Intel and partners have worked together to make
these technologies available in Kubernetes:

« Node Feature Discovery (NFD) enables Intel Xeon® Processor server hardware
capability discovery in Kubernetes

« CPU Manager for Kubernetes (CMK) provides a mechanism for CPU pinning and
isolation of containerized workloads

« Huge page support is native in Kubernetes v1.8 and enables the discovery,
scheduling and allocation of huge pages as a native first-class resource

« Single Root I/O Virtualization (SR-I0V) for networking

10

Node

: NODE SELECTION $ -

Selection

apiVersion:v1
kind:Pod
metadata:
name:nginx
spec:
containers
-name:nginx
image:nginx
nodeSelector:
node.alpha.kubernetes-
incubator.io/nfd-network-SRIOV:true

WORKLOAD PLACEMENT |

~5)DPDK

node.alpha.kubernetes-incubatorio/nfd-network-SRIOV:true

» node.alpha kubernetes-incubator.io/nfd-netid-AVX:true

___—— K8s MASTER

-
KUBELET
==

| Cooomr)

SR —

WORKLOAD PLACEMENT

NODE 3

~ 7" PLANE DEVELOPMENT KIT

11

Container Networking 2)DPDK

DATA PLANE DEVELOPMENT KIT

System Architecture 2)DPDK

Internet
Cisco Catalyst* 2960 Switch Internet/
) T T S u—m—_————l
| [zz2i: G)
| rnmme Network Switch"x670V pata Network ‘ Lr
& 1onEsrP+r.., izt bl 4 3.
1 Lt L] & t i
"‘.:1 “ens2fo ene2f | {eng210 en,-':zn "‘:‘
o i ' 1L g | tmj L S
; 5 1350 - T4
: x71o DM:

1350 - T

\....-.....
fenin

el _ _
0 H southd. wuthﬂ]{normo]-[em
> _J “HDPDK
Kubernetes POD Kubemetes POD -

Ku
Kubernetes v1.5.2

Kubernetes v1.5.2

kubelet
kube-proxy
kube-scheduler
kube-controller-manager
kube-apiserver

kubelet
kube-proxy

etced v3.0.15

Dockerv1.13.1
Ubuntu 16.04, Kemel v4.4.0-62

Flannel v0.0.v

Flannel v0.6.0
Docker v1.13.1
Ubuntu 16.04, Kernel v4.4.0-62

K8s Minion

K8s Master + Minion

Container Networking 2)DPDK

Docker0Q — Default Networking of Docker

CNI — Kubernetes Container Networking Interface
Basic Overlay networking for containers in Kubernetes cluster
Plug-in based container solution for networking
- common interface between the network plugins and container execution

Why CNI?

Application containers on Linux are a rapidly evolving area, and within

this area networking is not well addressed as it is highly environment-
specific.

Many container runtimes and orchestrators will seek to solve the same
problem of making the network layer pluggable.

CNI - Connects with One Network Interface to K8 Pod

Why Do You Need Multiple Network Interfaces? @ DEDX

Provide VNFs with redundancy of the network

Segregate the control plane from the data plane traffic.
Multiple stacks, different tuning and configuration requirement
Network Slicing in high performance Networking

Slicing offers container direct access to high performance NIC hardware

2)DPDK

@ CNI Plugin

Overview

Each CNI plugin must be implemented as an executable that is invoked by the container management system (e.g. rkt or
Kubernetes).

A CNI plugin is responsible for inserting a network interface into the container network namespace (e.g. one end of a veth
pair) and making any necessary changes on the host (e.g. attaching the other end of the veth into a bridge). It should then
assign the IP to the interface and setup the routes consistent with the IP Address Management section by invoking
appropriate IPAM plugin.

General considerations

* The container runtime must create a new network namespace for the container before invoking any plugins.

* The runtime must then determine which networks this container should belong to, and for each network, which plugins
must be executed.

Multus Workflow

@ DATA PLANE DEVELOPMENT KIT

Multus Network Workflow in kubernetes

; ; ; ; Master Minion
Kubelet Container runtime Network plugin Multus plugin s ;
: : : | plulqm Dlutqm
I } | | | J
| . ' | | | | |
I Sync loop : I I | | |
I P —————. I I | l |
: : l I : |
RunPod () - .
| M| SetUpPod() | | | |
I I | | | |
| I J I I |
| I (| | |
1 I I L L | I |
| | i SetUpPod () | | |
i | 1 of delegateRdd() | |
I | I | » cmdAdd |
			D
		e e	
I I I	I		
I I I : g Il			
I I	dalenab Ak 1 émdAd		
			del dd () "
			I
[L s e e finas s v 4	
			I
			I
I I	I I		
J		!	
			I
1 | 1 —i
: Master Minion
Kubelet Container runtime Network plugin Multus plugin plugin | A

s e o 2N 5 pPDK

£} Container {Z¢ container

>

Pod Pod

Network Control Flow Pod Network Interfaces
with Multus with Multus

KUBELET Kubernetes Pod

2)DPDK |SR-IOV

Software Components 2)DPDK

DATA PLANE DEVELOPMENT KIT

Software R
Component Description References
i Ubuntu* 16.04.2 x86_64 (Server)
Host Operating =5t https://www.ubuntu.com/download/server
System Kernel: 4.4.0-62-generic
i40e v2.0.30 . i i i
NIC Kernel Drivers https://sourceforge.net/projects/e 1000/ iles/i
i40evf v2.0.30 40e%?20stable
Oata fitane DPDK 17.05 http://fast dpdk.org/rel/dpdk-17.05 tar.xz
Development Kit ’ B- Lpakorg D ==
CPU Manager for v1.1.0 &v1.2.1 https://github.com/Intel-Corp/CPU-Manager-
Kubernetes* for-Kubernetes
Ansible* Ansible 2.3.1.0 https://github.com/ansible/ansible/releases
Barg I SR Includes Ansible* scripts to deploy Kubernetes https://github.com/intel/container-
Environment Setup ; :
) v1.6.6 & 1.8.4 experience-kits
scripts
Docker* v1.13.1 https://docs.docker.com/engine/installation/
V2.0.0 . : :
SR-I0V Network) https://github.com/intel/sriov-network-
device plugin Commit SHA: device-plugin
f01659ef33aeedeb262687669f861bffced740d9
v0.2-alpha. commit ID: :
SRIOV-CNI 22b6a7e03d8da4563848296c6832e6aefc968a6 https://www.ubuntu.com/download/server

Additional github links 2)DPDK

https://github.com/containernetworking/cni/blob/master/SPEC.md

https://qgithub.com/Intel-Corp/multus-cni/

https://github.com/intel/sriov-network-deviceplugin.qit

https://github.com/intel/sriov-network-deviceplugin/blob/master/images/sriovdp-
daemonset.yaml

Sample Deployment Specification Files - hitps://github.com/intel/sriov-network-
deviceplugin/tree/master/deployments

SR-IOV CNI Plugin https://github.com/intel/sriov-cni.qgit
To Build User Space CNI https://github.com/intel/userspace-cni-network-plugin

User space network object /github.com/intel/userspace-cni-networkplugin/examples

20
e . W A —

Node Feature Discovery @ DPDK

Node Feature Discovery - NFD

2

DPDK

DATA PLANE DEVELOPMENT KIT

NODE FEATURE DISCOVERY IN KUBERNETES

Application A
Node selector:

SR-IOV

NODE 2
MASTER _

Application B

Node selector: NODE 1 UG

NODE2 = WW'D

Applic.;tinn A

> Turbo Boost - Appesatens NFD__
L. _--' I:_z-- .: —'- y

hitps://builders.intel.com/docs/networkbuilders/node-feature-discovery-application-note.pdf

22

1st Class.. 2" Class Distinction 2DPDK

How to schedule pods that need high 1/O traffic accordingly?
Not all the nodes are created equal

Some may have 15t class high performance components
Others may be regular 2" class

How can we benefit in containers?

How can we know which nodes have 15t class high performant building blocks?

Node Feature Discovery @ DPDK

Run-once K8s job
Detects hardware features that are available at node level
How does Kubernetes use this information?

For scheduling containerized VNFs for best match

CPU Core Manager 2DPDK

=) DPDK
Cloud Tenants Demand Performance @

Enhanced Platform Awareness & CPU Pinning

Single node can run many pods

Some of these pods could be running CPU-intensive workloads

In such a scenario, these pods might content for more CPU in that node
Let us say the pod is throttled and depending on availability of CPU,

- The workload could move to different CPU

Or

- Workload could be sensitive to context switches.

Enter CPU Core Manager

CPU Manager — Low Latency, High Perf Containers@ bPDK

- Workload could be sensitive to context switches.

How CPU manager can help?

It allocates exclusive CPUs for demanding workload

Enable CPU manager with policy
Configure your pod to be in the Guaranteed QoS class.

Request whole numbers of cores for containers needing exclusive cores

DATA PLANE DEVELOPMENT KIT

System Architecture 2)DPDK

Internet
Cisco Catalyst* 2960 Switch Internet/
) T T S u—m—_————l
| [zz2i: G)
| rnmme Network Switch"x670V pata Network ‘ Lr
& 1onEsrP+r.., izt bl 4 3.
1 Lt L] & t i
"‘.:1 “ens2fo ene2f | {eng210 en,-':zn "‘:‘
o i ' 1L g | tmj L S
; 5 1350 - T4
: x71o DM:

1350 - T

\....-.....
fenin

el _ _
0 H southd. wuthﬂ]{normo]-[em
> _J “HDPDK
Kubernetes POD Kubemetes POD -

Ku
Kubernetes v1.5.2

Kubernetes v1.5.2

kubelet
kube-proxy
kube-scheduler
kube-controller-manager
kube-apiserver

kubelet
kube-proxy

etced v3.0.15

Dockerv1.13.1
Ubuntu 16.04, Kemel v4.4.0-62

Flannel v0.0.v

Flannel v0.6.0
Docker v1.13.1
Ubuntu 16.04, Kernel v4.4.0-62

K8s Minion

K8s Master + Minion

Multus CNI Plugin

2

DPDK

DATA PLANE DEVELOPMENT KIT

()

CNI

b

[Multus CNI Plugi nj

- = w
pod ©

E i
£ & L | B
ol docker =) - =
c .~ E]
S x B £
T & s %
g docker o
o ({

VF

VF

10 GbE SFP+

[ens2fo I ens2f1 JPorts

| “Intel® X710 - DA4

rts

enol
Intel ® 1350 - T4

https://builders.intel.com/docs/networkbuilders/enabling_new_features_in_kubernetes_for_NFV.pdf

Multus CNI Plugin 2)DPDK

What enhancement Multus CNI plugin brings?
Multus CNI allows K8s pods to be multi-homed
High performance Networking

Which is default route? Who defines it?

Masterplugin is for control plane and default route
Flannel

What about High performance Data path?
Minionplugin for data plane

What are some examples of Minionplugin?
Flannel,
IPAM [Internet Protocol Address Management]
SR-I0OV CNI Plugin — VF Interface Using Kernel
SR-I0V CNI Plugin — VF Interface using DPDK

Multus CNI Plugin 2)DPDK

I/F name shown on host

External / Intfernet 1) To Access Internet Enol
2) Remote Access to host
3) Access to K8s pods

Overlay Network Overlay network for K8 pods enol

Data Network High performance Data Ens2f0 / ens2f1
plane — SR-IOV VFs

SR-IOV CNI Plugin 2 DPDK

- What enhancement SR-IOV CNI Plugin brings?
SR-I0V CNI plugin enables high performance networking
K8s pods to connect to SR-IOV VF.

- What drivers SR-IOV CNI Plugin supports?
DPDK Drivers such as VFIO-PCI
Kernel VF Drivers

- Note for general CNI

- 1) Configuration files — For all pods within the node having same network interface

- 2) Objects — Each pod has different network interface

e Pod A spec with network object annotation “SRIOV" connected to SR-IOV networks
with the default network.

* Pod B spec without any network object annotation, but having “Weave" as default
network, connected to Weave network.

Flow Chart

2

DPDK

DATA PLANE DEVELOPMENT KIT

Custom Resource Definition — Kubect! to create CRD

Flow Chart to Create Multus Network Interfaces in Kubernetes

CRD Network:
kubectl
Create

Flannel
Network
Attachment
Def.

Macvlan
Network
Attachment
Def.

POD
annotation
network:
Flannel
macvian

®

CRD Network
Object

Creatini
@

Pod
Creation

),

Kubernetes Master

KUBE APl SERVER

CRD NETWORK OBJECT
flannel

config [

CRD NETWORK OBJECT
Macvlan

Config
IPAM

POD spec

annotation
network:
flannel
macvlan

®

Master
Assign
POD

—
C—

Out of cluster
Communication
Between Multus

&
Apiserver

O,

Kubernetes Minion

KUBELET

cNl |

MNet plugins

Default Flannel Macvlan
Net.

33

Multus CNI Plugin 2)DPDK

—

CNI s ~

o
=]
o

1 GbE

b

(e creen)

-T4

Flannel linux
bridge

Docker containers
Intel ® 1350

5) DPDK

Flanne| linux

bridge

VF VF | 10 GbE SFP+

[ens2fo I ens2f1 JPorts
| “Intel® X710 - DA4

Node Feature Discovery - NFD

2

DPDK

DATA PLANE DEVELOPMENT KIT

NODE FEATURE DISCOVERY IN KUBERNETES

Application A
Node selector:

SR-IOV

NODE 2
MASTER _

Application B

Node selector: NODE 1 UG

NODE2 = WW'D

Applic.;tinn A

> Turbo Boost - Appesatens NFD__
L. _--' I:_z-- .: —'- y

hitps://builders.intel.com/docs/networkbuilders/node-feature-discovery-application-note.pdf

35

Node Feature Discovery Script - Mechanism @ DPDK

NFD detects hardware features available on each node in a K8 cluster

Advertises those features using node labels

Node Feature Discovery Script launches a job
That job deploys a single pod on each unlabeled node.
When each pod runs, it contacts the K8 API server to add labels to the node.

Node Labels Usage - etcd @ DPDK

Key/pair values — attached to pods or nodes
Labels generated by NFD can be checked from the master node with kubectl commands

Specify identifying attributes of objects relevant to end user
Useful to organize objects into specific subsets

All the Information is kept within etcd

CPU Manager 2 DPDK

High-Level Overview of DPDK Testpmd Workload Setup

Management Interface

58 Paort
Kubernetes Minion Node [P
Ubuntu 16.04.2

Kubernetes
pod1 od2 pod3 podn Master Node
stress-ng testpmd testpmd testpmd Ubuntu 16.04.2
Noisy g container container
Neighbor Jbutu 16.0 (Ubutu 16.04.2) {Ubutu 16.04.2)
container
(Ubutu 16.04.2)

; ; ’
Port | Port

| VFn | VF1 || VF2 || VF3 | VFn || PF1 |

Hardware L2 Switch Hardware L2 Switch

25 Gigabits
Intel* Ethernet

ill‘u-r'l Ul;
2 XXVT10

[Port 1 |

 Port 1

CPU Core Manager — 3 Pools of Processors @ bPDK

aetc
| kcm

| lock §system lock to prevent confliet

| pools
=
| | ’ #logical core IDS
|
|

#&5%5 fcontains linux Process 1Ds
- '

| | | tasks
I I 4,5
|

| | tasks

clusiue tDetermine exclusivity (exclusive == 1)

| 6,7

I |__ tasks

- Data plane pool is exclusive
- Control plane pool and Infra pools are shared

- When there is no pool mentioned in pod specification, then ?
CPU Core manager will use cores from the infra pools

Remember Isolcpu in /proc/cmdline ¢

Infra => un-isolated

Call For Action @ DPDK

Multus CNI Plugin
Segregate your data plane from control plane
Redundancy in your network
SR-IOV CNI Plugin
Attach directly to high performance Network Slicing
High performance Containerized VNF
Node Feature Discovery
Deploy Pods on nodes with the desirable hardware features
CPU Core Manager For K8s
Isolate your minions to do their work

DPDK
Acknowledgements @

https://docs.docker.com/get-started/#containers-vs-virtual-machines#containers-vs-virtual-machines

https://thenewstack.io/taking-kubernetes-api-spin/

https://kubernetes.io/blog/2018/07 /24 /teature-highlight-cpu-manager/

https://builders.intel.com/docs/networkbuilders/enabling new features in_kubernetes for NFV.pdf

41

Contact

M Jay

Muthurajan.Jayakumar@intel.com

