11 Minutes to Debug,
Troubleshoot and Analyze

Packet Life - Overview

9 DATA PLANE DEVELOPMENT KIT

Workexr 1

NIC 1
Worker 2

core0 core 2,3,4
Stats Collector

Health Check

core 7

- Applications also can be modeled as

- single or multiple primary processes.
- single primary and single secondary.
- single primary and multiple secondaries.

PKT classify
Rl D> cventicy -~ - = N
Distribute
core 5

Worker 1
NIC 1

Worker 2 :
: TX
core 6

core 2,3,4 corel

AGENDA

“It is tedious to isolate, debug,
and understand various
behaviors which occur randomly
or periodically. The goal of the
guide is to consolidate a few
commonly seen issues for
reference. Then, isolate to
identify the root cause through
step by step debug at various
stages.”

a > WL DN

Explore the cause of drops.
Debug and troubleshoot guide.
Changes in pro-info.

Malloc Scanner.

Future work.

Bottleneck Analysis

9 DATA PLANE DEVELOPMENT KIT

Is there mismatch
in packet
(received <
desired) rate?

Is there packet
drops at receive
or fransmite

Is there object
drops for the ring
librarye

does RX Icore
threads gets
enough cyclese

Check g_errors &
rx_nombuf
rte_eth_dev_stafts

Performance issue , all
are single

RING_F _SP_ENQ or
RING_F_CP_DEQ.

for RX adapter or RX
distributor, fry using
rte_prefetch_non_temporal

Check
rte_eth_[rx | tx]_burst
invokes the vector
function call for the
PMD.

Extreme stall in
the enqueue or
dequeue

Check if there
queue specific

offload failures.

large size packets,
check MTU and
multi-segment
support configured
for NIC.

Bottleneck Analysis - Contd|? @ DPDK

Is there a o S :
. . Are we linearize Application logic
variance in multi-segment; Packet or object sets If absent for larger
pocke’r or ObjeCT software offload like buffer copy if not rte_pktmbuf_refcnt_ huge pages, try
i i checksum, TSO, done selectively. set to higher and rte_mem_lock_page.
processing rafe in and VLAN strip. holds longer.

the pipeline?¢

s ’(here O Parallelize software-assist is in hg;(éwgrf&(rjessgyrshin
variance in enqueue | dequeue use, ensure the firfnwore o
cryp’rodev thread for varied liorary is built with drivers are up to

performcmce? multiple queue pair. right (SIMD) flags. el
- functions rte_thread_get_affi e :
Is user fUI’]CTIOI’.]S performance nity to isolate Useen?JreOngCU(;gg i:o
performance is Spemeh e functions running st o fhe
2 context switches on the same .
not as expecteds (Use Icore threads). ore. desired uops.
Is the execution ,
cycles for Run parallel on all T':\ selrwces shcre"
i i cores with e Icore, overa
fdy”?.m'c Ser"'ceT RTE_SERVICE_CAP_ execution should
uncrions dare no MT_SAFE. fit budget.

frequent?

Bottleneck Analysis - Contd

2

Is there a
boftftleneck in the
performance of

eventdeve

Is there @
variance in traffic
managere

Is the packet not
in the
unexpected
formate

Does the issue still
EINN K

Check for loops
between event
queue.

If SW pipeline -
insufficient CPU
cycles.

First, isolate at NIC
entry and exit.

Check for errors due
to vendor | app
META data.

identify the starvation
in queues.

flow drops can be

narrowed down fo

WRED, priority, and
rates limiters.

Second, isolate at
pipeline entry and
exit.

In multi-process
check possible errors
in configuration and

data corruption in
the data plane.

Check for stalls using
in-flight events.

rte_tn_get_number_o

f_leaf_node and flow

table to pin down the
leaf.

Try using the cache
allocation technique
to minimize the effect

between
applications.

DPDK

DATA PLANE DEVELOPMENT KIT

. =) DPDK
What are the various drop? é)

Memory misconfiguration.

NUMA Node 0 NUMA Node 1

NUMA access.

CPUO CPU1

~

Miscalculation in number of objects in pool.

Core

Core

Core

Core Core Core Core

Unused cached objects per Icore.

Core Core Core Core Core Core Core

Core Core Core Core Core Core Core

1] Rl

aaEa~

Turbo boosting SISD instead SIMD.

Allowing single or multiple physical cores run at
full boost.

Cache misaligned.

Exception path overflowing with packet
scenarios.

guides/howto/debug_troubleshoot_guide.html

How can the drops be identified? 2 DPDK

yZ Custom tools

(

Characterize

(perf top,

, Thread viune).
tack Tracer).

Generic _
tools (Istopo, Quantize

dmidecode, (perf record).
) 2

Regress Isolate
(huma,

(pkt-gen, hu
ge page
trex). link) .

http://doc.dpdk.org/guides/tools/proc_info.html
https://github.com/vipinpv85/DPDK-THREADTRACE-WITHOUTGDB
https://github.com/vipinpv85/DPDK-MALLOCFREE-SCANNER
https://github.com/vipinpv85/DPDK-MEMZONEMONITOR

Why are there drops at stages”? 2 DPDK

Memory access.
Configuration.
Insufficient objects in pool.
- Variance in Platform (BUS or CPU speed).
Misconfiguration.
Thermal-Power throttling.
No or over optimizations (Backend queuing up).
Intermediate or burst exceptions.

Traffic Manager Issue (PF)? @ DPDK

Level O:

*Who owns TM (Primary or Secondary)?

hc IT iS mUH'I prOCGSS WITh * Who owns root node (Primary or Secondary)?

*How will validation for shapers takes places (Primary | Secondary)?

shared interface *Who can call TM API ((Primary and Secondary))?
(primgry SeCOﬂdOry) * Primary configures and Secondary fetch stats (PMD implementation
dependent)

* Primary and Secondary share multiple queues.

Traffic Manager Issue (on PF-VF)?

9 DATA PLANE DEVELOPMENT KIT

Level O: Port N Level O: Port N
R ‘R
v v
Level 1: Txq 0 Txq 1 ° o o Txq M Level 1: Txq O Txq 1 TxgM
of o . . * Who owns PF is owned by Kernel (Traffic Class [tc])¢
|f |T N Slﬂg|e or mUlh * Who owns PF is owned by DPDK, root node by PF or VF or bothe
prOCGSS WITh PF _\/F * Can root be shared for multiple VF with max capacity (who validates TM

configuration)?

. =) DPDK
Can | run in non root user? é)

Create non root user with no sudo or root permission.

Create workspace.

Change ownership of huge page mount area for non root user.
export XDG_RUNTIME_DIR=<user workspace>

Bind interface with igb_uio | uio_pci_generic | vfio_genreric.
Change ownership device to user.

Change ownership of application to user.

Run application with huge-dir user mount area.

Future Work 2 DbPDK

Proc-Info

e Eventdev

e Compressiondev

* ACL detailed dump (Key & Result)
* LPM result dump

Debug & Troubleshoot guide

* More use cases

* Runs as non root

e Cache partitioning

* How to run application as non root user.

Tools

e Share malloc-free scanner & Memzone monitor as RFC or github
* eBPF or BPF based debug on user space DPDK libraries and PMD.

DPDK

Thanks All, Q & A?

=) DPDK

DATA PLANE DEVELOPMENT KIT

) LICENSE Create LICENSE) LICENSE Create LICENSE 21 days ago) LICENSE LICENSE 21 daysago
) Makefile Add files via upload E) READVEd Update READMEmd 21 days ago) Makefile Add files via upload ayear ago
E) READMEmd Update READMEmd
) m pdate m B mainc Add fles viaupload amonthago &) READMEMd Update README.md amonth ago
B) contextunwind.c Add files via upload E) maine Add files via upload ayear ago
E) contextunwind.h Add files via upload READMEmd /

B main_bkp Add files via upload ayear ago
B mainc Add files via upload
B main_orgc Add files via upload README.md s

DPDK-MALLOCFREE-SCAN

README.md

DPDK-MEMZONEMONITOR
DPDK-THREADTRACE-WITHOUTGDB Purpose

dump all threads stack and register information. useful in target where no gdb or pdump is not available. debug tool for accumlating information on rte_calloc|zalloc|nallloc and rte free in DPDK Motivation

* [Depdency DPDK applications can be modeled with single run to completion or multi pipe line stage completion models. Single or
multiple process can itnerac twith packets and data alike. Hence corruption in any of the data, lookup tabels or counters in

hard to isolate. This can occur when certan excpetion code process is taken hence diffcult to reproduce too.

Motivation

libunwind, pthread_self (on each thread whose back trace and register extract is required.)

DPDK allocas like rte_malloc, rte_calloc and rte_zalloc does not map alloc region name to address. The variables are unsed. This

* [BUILD]
makes it difficult to track the uasage on dynamically allocates instance. .
CFLAGS += -L/usr/lib/x86_64-linux-gnu/ -lunwind , LDFLAGS += -L/usr/lib/x86_64-linux-gnu/ -lunwind Solut|on
Use Cases Solution , - . - .
We can isolate above scenarios if low overhead process monitors changes occuring in a table or counters which is not expected
))))) to update. Using DPDK multi-process model we can get access to all huge page content from primary or othe rmulti process
* Binary are stripped. o Create a container to hold malloc|callocfzalloc name, pointer and size. applcitions
* Binary and Application have no debug symbols o on every successful allocation fetch an element holder from fb_array and update the details.

./$(RTE_TARGET)/app/dpdk-procinfo -- -m | [-p PORTMASK] [--stats | --xstats |
--stats-reset | --xstats-reset] [--show-port | --show-tm | --show-crypto |

--show-ring[=name] | --show-mempool[=name] | --iter-mempool=name] -

DPDK-MALLOCFREE-SCANNER |

2

DPDK

DATA PLANE DEVELOPMENT KIT

Primary

ADK_MALLOC_REGIONS 0x1000013f8 addr 0x100330f40hello
from core 4

rte_malloc for 16 bytes!
name 0-0 0x100330ec0
index Orte_malloc for 16 bytes!
name 0-1 0x100330e40
index 1rte_malloc for 16 bytes!
name 0-2 0x100330dc0
index 2rte_malloc for 16 bytes!
name 0-3 0x100330d40
index 3rte_malloc for 16 bytes!
name 0-4 0x100330cc0
index 4rte_malloc for 16 bytes!
name 0-5 0x100330c40
index Srte_malloc for 16 bytes!
name 0-6 0x100330bc0

Secondary

Process is RTE_PROC_SECONDARY!

ADK_MALLOC_REGIONS 0x1000013f8 addr 0x100330f40

element index 0, fetch 2, count 0
name 0-0 ptr 0x100330ecO
name 0-1 ptr 0x100330e40
element index 2, fetch 2, count 2
name 0-2 ptr 0x100330dc0
name 0-3 ptr 0x100330d40
element index 4, fetch 2, count 4
name 0-4 ptr 0x100330cc0
name 0-5 ptr 0x100330c40
element index 6, fetch 2, count 6
name 0-6 ptr 0x100330bc0
name 0-7 ptr 0x100330b40

DATA PLANE DEVELOPMENT KIT

@DPDK

11.2. Bottleneck Analysis

A couple of factors that lead the design decision could be the platform, scale factor, and target. This
distinct preference leads to multiple combinations, that are built using PMD and libraries of DPDK.
While the compiler, library mode, and optimization flags are the components are to be constant,
that affects the application too.

11.2.1. Is there mismatch in packet (received < desired) rate?

RX Port and associated core Fig. 11.2.

Core0
Fig. 11.2 RX packet rate compared against received rate.

1. Is the configuration for the RX setup correctly?
« Identify if port Speed and Duplex is matching to desired values with rte_eth_link_get.
« Check MTU value is set to the expected packet size to receive with rte_eth_get_mtu if there
are large packet drops.
« Check promiscuous mode if the drops do not occur for unique MAC address with
rte_eth_promiscuous_get.
2. Is the drop isolated to certain NIC only?
Make use of rte_eth_dev_stats to identify the drops cause.

If there are mbuf drops, check nb_desc for RX descriptor as it might not be sufficient for the
application.
If rte_eth_dev_stats shows drops are on specific RX queues, ensure RX Icore threads has

enough cycles for rte_eth_rx_burst on the port queue pair.

If there are redirect to a specific port queue pair with, ensure RX Icore threads gets enough
cycles.

Check the RSS configuration rte_eth_dev_rss_hash_conf_get if the spread is not even and
causing drops.

If PMD stats are not updating, then there might be offload or configuration which is

dropping the incoming traffic.

11.2.2. Is there packet drops at receive or transmit?

RX-TX port and associated cores Fig. 11.3.

Core0
Fig. 11.3 RX-TX drops

Corel

1. At RX
« I|dentify if there are multiple RX queue configured for port by nb_rx_queues using
rte_eth_dev_info_get.
« Using rte_eth_dev_stats fetch drops in q_errors, check if RX thread is configured to fetch
packets from the port queue pair.
« Using rte_eth_dev_stats shows drops in rx_nombuf, check if RX thread has enough cycles to
consume the packets from the queue.
2.AtTX
« If the TX rate is falling behind the application fill rate, identify if there are enough descriptors
with rte_eth_dev_info_get for TX.
« Check the nb_pkt in rte_eth_tx_burst is done for multiple packets.
« Check rte_eth_tx_burst invokes the vector function call for the PMD.
« If oerrors are getting incremented, TX packet validations are failing. Check if there queue
specific offload failures.
« If the drops occur for large size packets, check MTU and multi-segment support configured
for NIC.

11.2.3. Is there object drops in producer point for the ring library?

Producer point for ring Fig. 11.4.

Stage 1 » St 2 » Stage 3

Fig. 11.4 Producer point for Rings

1. Performance issue isolation at producer
« Use rte_ring_dump to validate for all single producer flag is set to RING_F_SP_ENQ.
« There should be sufficient rte_ring_free_count at any point in time.
« Extreme stalls in dequeue stage of the pipeline will cause rte_ring_full to be true.

11.2.4. Is there object drops in consumer point for the ring library?

Consumer point for ring Fig. 11.5.

Stage 1 » Stage 2 ‘ Stage 3

Fig. 11.5 Consumer point for Rings

1. Performance issue isolation at consumer
« Use rte_ring_dump to validate for all single consumer flag is set to RING_F_SC_DEQ.
« If the desired burst dequeue falls behind the actual dequeue, the enqueue stage is not filling
up the ring as required.
« Extreme stall in the enqueue will lead to rte_ring_empty to be true.

17

)

DPDK

DATA PLANE DEVELOPMENT KIT

)

11.2.5. Is there a variance in packet or object processing rate in the
pipeline?

Memory objects close to NUMA Fig. 11.6.

Payload

struct mbuf | Metadata

MBUF pool

Fig. 11.6 Memory objects have to be close to the device per NUMA.

1. Stall in processing pipeline can be attributes of MBUF release delays. These can be narrowed

down to

Heavy processing cycles at single or multiple processing stages.

Cache is spread due to the increased stages in the pipeline.

CPU thread responsible for TX is not able to keep up with the burst of traffic.

Extra cycles to linearize multi-segment buffer and software offload like checksum, TSO, and
VLAN strip.

Packet buffer copy in fast path also results in stalls in MBUF release if not done selectively.
Application logic sets rte_pktmbuf_refcnt_set to higher than the desired value and
frequently uses rte_pktmbuf_prefree_seg and does not release MBUF back to mempool.

2. Lower performance between the pipeline processing stages can be

The NUMA instance for packets or objects from NIC, mempool, and ring should be the
same.

Drops on a specific socket are due to insufficient objects in the pool. Use
rte_mempool_get_count or rte_mempool_avail_count to monitor when drops occurs.
Try prefetching the content in processing pipeline logic to minimize the stalls.

3. Performance issue can be due to special cases

Check if MBUF continuous with rte_pktmbuf_is_contiguous as certain offload requires the
same.

Use rte_mempool_cache_create for user threads require access to mempool objects.

If the variance is absent for larger huge pages, then try rte_mem_lock_page on the objects,
packets, lookup tables to isolate the issue.

11.2.6. Is there a variance in cryptodev performance?

Crypto device and PMD Fig. 11.7.

Device

CRYPTO PMD

Core 7
Fig. 11.7 CRYPTO and interaction with PMD device.

1. Performance issue isolation for enqueue
« Ensure cryptodev, resources and enqueue is running on NUMA cores.
« Isolate if the cause of errors for err_count using rte_cryptodev_stats.
« Parallelize enqueue thread for varied multiple queue pair.
2. Performance issue isolation for dequeue
« Ensure cryptodeyv, resources and dequeue are running on NUMA cores.
« Isolate if the cause of errors for err_count using rte_cryptodev_stats.
« Parallelize dequeue thread for varied multiple queue pair.
3. Performance issue isolation for crypto operation
« If the cryptodev software-assist is in use, ensure the library is built with right (SIMD) flags or
check if the queue pair using CPU ISA for feature_flags AVX|SSE|NEON using
rte_cryptodev_info_get.
« If the cryptodev hardware-assist is in use, ensure both firmware and drivers are up to date.
4. Configuration issue isolation
« ldentify cryptodev instances with rte_cryptodev_count and rte_cryptodev_info_get.

11.2.11. Is the packet not in the unexpected format?

Packet capture before and after processing Fig. 11.11.

Q2 Q4

Primary

Core 0
Ring BufferQ

Secondary
Fig. 11.11 Capture points of Traffic at RX-TX.

1. To isolate the possible packet corruption in the processing pipeline, carefully staged capture
packets are to be implemented.

« First, isolate at NIC entry and exit.

Use pdump in primary to allow secondary to access port-queue pair. The packets get copied
over in RX|TX callback by the secondary process using ring buffers.

« Second, isolate at pipeline entry and exit.

Using hooks or callbacks capture the packet middle of the pipeline stage to copy the
packets, which can be shared to the secondary debug process via user-defined custom rings.

Use similar analysis to objects and metadata corruption.

11.2.12. Does the issue still persist?

The issue can be further narrowed down to the following causes.

1. If there are vendor or application specific metadata, check for errors due to META data error
flags. Dumping private meta-data in the objects can give insight into details for debugging.

2. If there are multi-process for either data or configuration, check for possible errors in the
secondary process where the configuration fails and possible data corruption in the data plane.

3. Random drops in the RX or TX when opening other application is an indication of the effect of a
noisy neighbor. Try using the cache allocation technique to minimize the effect between
applications.

18

)

DPDK

DATA PLANE DEVELOPMENT KIT

/O)

11.2.9. Is there a bottleneck in the performance of eventdev?

1. Check for generic configuration

Ensure the event devices created are right NUMA using rte_event_dev_count and
rte_event_dev_socket_id.
Check for event stages if the events are looped back into the same queue.

If the failure is on the enqueue stage for events, check if queue depth with
rte_event_dev_info_get.
2. If there are performance drops in the enqueue stage

« Use rte_event_dev_dump to dump the eventdev information.

« Periodically checks stats for queue and port to identify the starvation.

« Check the in-flight events for the desired queue for enqueue and dequeue.

11.2.10. Is there a variance in traffic manager?

Traffic Manager on TX interface Fig. 11.10.

core 10 Comal

Fig. 11.10 Traffic Manager just before TX.

1. Identify the cause for a variance from expected behavior, is due to insufficient CPU cycles. Use
rte_tm_capabilities_get to fetch features for hierarchies, WRED and priority schedulers to be
offloaded hardware.

2. Undesired flow drops can be narrowed down to WRED, priority, and rates limiters.

3. Isolate the flow in which the undesired drops occur. Use rte_tn_get_number_of leaf_node and
flow table to ping down the leaf where drops occur.

4. Check the stats using rte_tm_stats_update and rte_tm_node_stats_read for drops for hierarchy,
schedulers and WRED configurations.

11.2.8. Is the execution cycles for dynamic service functions are not
frequent?

service functions on service cores Fig. 11.9.

Stats Collector

Health Check

core 6
Fig. 11.9 functions running on service cores

1. Performance issue isolation
« Services configured for parallel execution should have rte_service_lIcore_count should be
equal to rte_service_lcore_count_services.
« A service to run parallel on all cores should return RTE_SERVICE_CAP_MT_SAFE for
rte_service_probe_capability and rte_service_map_lcore_get returns unique Icore.
« If service function execution cycles for dynamic service functions are not frequent?
« If services share the Icore, overall execution should fit budget.
2. Configuration issue isolation
« Check if service is running with rte_service_runstate_get.
« Generic debug via rte_service_dump.

11.2.7. Is user functions performance is not as expected?

Custom worker function Fig. 11.8.

worker 4
PKT classify worker 3
. . worker 2
Distribute
worker 1
core 1

core 2,3,4,5
Fig. 11.8 Custom worker function performance drops.

1. Performance issue isolation
« The functions running on CPU cores without context switches are the performing scenarios.
Identify Icore with rte_lcore and Icore index mapping with CPU using rte_lcore_index.
« The functions running on CPU cores without context switches are the performing scenarios.
Identify Icore with rte_lcore and Icore index mapping with CPU using rte_lcore_index.
« Use rte_thread_get_affinity to isolate functions running on the same CPU core.
2. Configuration issue isolation
« ldentify core role using rte_eal_lcore_role to identify RTE, OFF and SERVICE. Check
performance functions are mapped to run on the cores.
« For high-performance execution logic ensure running it on correct NUMA and non-master
core.
« Analyze run logic with rte_dump_stack, rte_dump_registers and rte_memdump for more
insights.
« Make use of ‘objdump’ to ensure opcode is matching to the desired state.

19

