
Userspace 2015 | Dublin

DPDK Packet Framework
Cristian Dumitrescu, SW Architect at Intel

Agenda

1. Motivation
2. DPDK Packet Framework Libraries: librte_port, librte_table, librte_pipeline
3. Application Generator: ip_pipeline

Rapid Development

Pipeline

Packet RXRoute
Traffic

Manager
Packet TX

Packet
RX

Flow
Classify

Police
Packet

TX
ACL

Filters
Route

Downstream

Upstream

Edge Router
Core Network

(Provider)

Access Network
(Subscribers)

Down

Up

Edge Router Application

Functional Pipeline

DPDK Packet Framework quickly turns
requirements into code

Port In 0

Port In 1

Port Out 0

Port Out 1

Port Out 2

Table 0

Flow #

Flow #

Flow #

Actions

Actions

Actions
Table 1

Flow #

Flow #

Flow #

Actions

Actions

Actions

CPU Core

Pipeline

CPU Core

Pipeline

CPU Core

Pipeline

CPU Core

P

CPU Core

Pipeline

P

Zoom in:
CPU core

level

Zoom out: CPU
level

DPDK Packet Framework
Pipeline

Port In 0

Port In 1

Port Out 0

Port Out 1

Port Out 2

Table 0

Flow #

Flow #

Flow #

Actions

Actions

Actions
Table 1

Flow #

Flow #

Flow #

Actions

Actions

Actions

Ports

HW queue

SW queue

IP Fragmentation

IP Reassembly

Traffic Manager

Kernel Network I/F (KNI)

Source/Sink

Tables

Exact Match / Hash

Access Control List (ACL)

Longest Prefix Match (LPM)

Array

Pattern Matching

Actions

Reserved actions: Send to port,
Send to table, Drop

Packet edits: push/pop/modify
headers

Flow-based: meter, stats, app ID

Accelerators: crypto, compress

Load Balancing

Pipelines

Packet I/O

Flow Classification

Firewall

Routing

Metering

Traffic Mgmt

CPU Core

Pipeline

CPU Core

Pipeline

CPU Core

Pipeline

CPU Core

P

CPU Core

Pipeline

P

Zoom in: Pipeline level Zoom out: Multi-core application level

CPU Core Level (Pipeline)

Port In 0

Port In 1

Port Out 0

Port Out 1

Port Out 2

Table 0

Flow #

Flow #

Flow #

Actions

Actions

Actions
Table 1

Flow #

Flow #

Flow #

Actions

Actions

Actions

Rapid pipeline development out of ports, tables and actions based on
Open Flow inspired methodology

CPU Level (Application)

CPU Core

Pipeline

CPU Core

Pipeline

CPU Core

Pipeline

CPU Core

P

CPU Core

Pipeline

P

Application is made up of multiple pipelines connected together. Several
pipelines can be mapped to the same CPU core.

ip_pipeline

Configuration file:
‒ Defines the application structure by gluing together all pipeline instances. By using

different configuration files, different applications are generated
‒ All the application resources are created and configured through it
‒ Syntax is “define by reference”: first time a resource name is detected, it is registered

with default parameters, which can be refined through dedicated section

Command Line Interface (CLI):
‒ Pipeline type specific CLI commands: registered when pipeline type is registered (e.g.

route add, route delete, route list, etc for routing pipeline).
‒ Common pipeline CLI commands: ping (keep-alive), statistics, etc.

Library of reusable pipeline types

ip_pipeline

Flow
Classif

Routing

NIC
TX

NIC
TX

Pass-
through

NIC
TX

NIC
TX

NIC
RX

NIC
RX

NIC
RX

NIC
RX

[PIPELINE0]
type = MASTER
core = 0

[PIPELINE1]
type = PASS-THROUGH
core = 1
pktq_in = RXQ0.0 RXQ1.0 RXQ2.0 RXQ3.0
pktq_out = SWQ0 SWQ1 SWQ2 SWQ3
dma_size = 8
dma_dst_offset = 0
dma_src_offset = 140; headroom (128) + 1st ethertype offset (12) = 140
dma_src_mask = 00000FFF00000FFF; qinq
dma_hash_offset = 8; dma_dst_offset + dma_size = 8

[PIPELINE2]
type = FLOW_CLASSIFICATION
core = 1
pktq_in = SWQ0 SWQ1 SWQ2 SWQ3
pktq_out = SWQ4 SWQ5 SWQ6 SWQ7
n_flows = 16777216; n_flows = 65536
key_size = 8; dma_size = 8
key_offset = 0; dma_dst_offset = 0
hash_offset = 8; dma_hash_offset = 8
flow_id_offset = 64

[PIPELINE3]
type = ROUTING
core = 2
pktq_in = SWQ4 SWQ5 SWQ6 SWQ7
pktq_out = TXQ0.0 TXQ1.0 TXQ2.0 TXQ3.0
n_routes = 4096
l2 = mpls
mpls_color_mark = yes
ip_hdr_offset = 150; headroom (128) + ethernet header (14) + qinq (8) = 150
color_offset = 68

ip_pipeline

NIC
RX

NIC
RX

Flow
Classif

Meter Routing

NIC
TX

NIC
TX

NIC
RX

NIC
RX

Flow
Classif

Meter Routing

NIC
TX

NIC
TX

NIC
RX

NIC
RX

Flow
Classif

Meter Routing NIC
TX

NIC
TXMeter Routing

NIC
RX

NIC
RX

Flow
Classif

Meter

Routing

NIC
TX

NIC
TX

Flow
Classif

Meter

NIC
RX

NIC
RX

Flow
Classif

Meter Routing NIC
TX

NIC
TX

Flow
Classif

Meter Routing

CPU
Core

Pipeline
instance

Legend:

ip_pipeline

Pipeline type:
‒ Functional block: flow classification, routing, etc
‒ Back-end (packets) + front-end (run-time config)
‒ Can be instantiated several times in the same app

Pipeline instance:
‒ Each instance configured independently
‒ Each instance has its own set of packet Qs (back-end) and message Qs (front-end)
‒ Each instance mapped to a single CPU core

CPU core:
‒ Each CPU core can run one or several pipeline instances (of same or different type)
‒ Pipeline instances mapped to same CPU core are essentially time-sharing threads
‒ Each pipeline instance can be dynamically remapped from one CPU core to another

