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Agenda

1. Motivation
2. DPDK Packet Framework Libraries: librte_port, librte_table, librte_pipeline
3. Application Generator: ip_pipeline



Rapid Development
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DPDK Packet Framework quickly turns 
requirements into code
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DPDK Packet Framework
Pipeline
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Reserved actions: Send to port, 
Send to table, Drop

Packet edits: push/pop/modify 
headers

Flow-based: meter, stats, app ID
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CPU Core Level (Pipeline) 
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Rapid pipeline development out of ports, tables and actions based on 
Open Flow inspired methodology



CPU Level (Application)
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Application is made up of multiple pipelines connected together. Several 
pipelines can be mapped to the same CPU core.



ip_pipeline

Configuration file:
‒ Defines the application structure by gluing together all pipeline instances. By using 

different configuration files, different applications are generated
‒ All the application resources are created and configured through it
‒ Syntax is “define by reference”: first time a resource name is detected, it is registered 

with default parameters, which can be refined through dedicated section

Command Line Interface (CLI):
‒ Pipeline type specific CLI commands: registered when pipeline type is registered (e.g.  

route add, route delete, route list, etc for routing pipeline).
‒ Common pipeline CLI commands: ping (keep-alive), statistics, etc.

Library of reusable pipeline types



ip_pipeline
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[PIPELINE0]
type = MASTER
core = 0

[PIPELINE1]
type = PASS-THROUGH
core = 1
pktq_in = RXQ0.0 RXQ1.0 RXQ2.0 RXQ3.0
pktq_out = SWQ0 SWQ1 SWQ2 SWQ3
dma_size = 8
dma_dst_offset = 0
dma_src_offset = 140; headroom (128) + 1st ethertype offset (12) = 140
dma_src_mask = 00000FFF00000FFF; qinq
dma_hash_offset = 8; dma_dst_offset + dma_size = 8

[PIPELINE2]
type = FLOW_CLASSIFICATION
core = 1
pktq_in = SWQ0 SWQ1 SWQ2 SWQ3
pktq_out = SWQ4 SWQ5 SWQ6 SWQ7
n_flows = 16777216; n_flows = 65536
key_size = 8; dma_size = 8
key_offset = 0; dma_dst_offset = 0
hash_offset = 8; dma_hash_offset = 8
flow_id_offset = 64

[PIPELINE3]
type = ROUTING
core = 2
pktq_in = SWQ4 SWQ5 SWQ6 SWQ7
pktq_out = TXQ0.0 TXQ1.0 TXQ2.0 TXQ3.0
n_routes = 4096
l2 = mpls
mpls_color_mark = yes
ip_hdr_offset = 150; headroom (128) + ethernet header (14) + qinq (8) = 150
color_offset = 68



ip_pipeline
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ip_pipeline

Pipeline type:
‒ Functional block: flow classification, routing, etc
‒ Back-end (packets) + front-end (run-time config)
‒ Can be instantiated several times in the same app

Pipeline instance:
‒ Each instance configured independently
‒ Each instance has its own set of packet Qs (back-end) and message Qs (front-end)
‒ Each instance mapped to a single CPU core

CPU core:
‒ Each CPU core can run one or several pipeline instances (of same or different type) 
‒ Pipeline instances mapped to same CPU core are essentially time-sharing threads
‒ Each pipeline instance can be dynamically remapped from one CPU core to another


